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In this paper we introduce a new technique for data-dependent triangulation which is suitable for
implementation on a GPU. Our solution is based on a new parallel version of the well known Lawson’s
optimization process and is fully compatible with restrictions of the GPU hardware. We test and
compare the quality of our solution in an image reconstruction problem. In comparison with the
standard implementations we achieve significant speed-up (eight times on average) with comparable
quality of the reconstructed image. Further, several other improvements and optimizations are
introduced and tested, and the results are discussed in detail.
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1. Introduction

Parallelization of various computationally expensive problems
is today made possible by the architecture of mainstream
processors. Simultaneously, generalization of the GPU architectures
to non-graphic applications results in their wide usage in non-
standard areas, which benefit from the inherent parallelism of
GPUs. This observation leads us to the idea of accelerating
computation of optimal triangulations by such a GPU implementa-
tion. Nowadays, generation of optimal triangulations is done
mainly on the CPU, and, depending on the type of the required
property, the optimality can be achieved in a very time-consuming
optimization process.

Optimal triangulations are widely used in different branches of
science and technology. We focus our attention on the generation
of locally optimal meshes by iterative improvement (optimization),
which can be used in various geometrically defined problems, as,
for example, in finite element simulations and image reconstruction.
Specifically, we selected the image reconstruction (namely, edge
preserving magnification) problem, which can be solved by a special
case of optimal mesh, called data-dependent triangulation (DDT) [8].
The main advantage of this technique resides in its ability to fit the
mesh structure to the underlying data. We do not generate the
triangulation, but only optimize it. As an input we require an
arbitrary triangular mesh and with the help of special cost functions
and topological operations we generate an optimal one from it. With
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different choices of these functions we can obtain different proper-
ties of the resulting mesh.

Image reconstruction is only one of the application areas of
data-dependent triangulations. The possibility of visual represen-
tation of results was the reason for our selection. In comparison
with the convolution based techniques, the DDT based
approaches produce visually more pleasant results in high-
frequency areas. As an example, see the blocky artifacts in the
edge areas in Fig. 1(a), obtained by convolution, compared with
results obtained by non-convolution approaches in Fig. 1(b) and
(c). For creation of data-dependent meshes we choose an
approach called Lawson’s optimization process. Effective imple-
mentation of this technique on a GPU requires its parallelization.
The processing pipeline of a graphics card, however, is not directly
suitable for representation and maintenance of the data
structures usually used in this type of computations. Therefore,
the main challenge was to avoid the hardware restrictions and to
design a fully parallel approach implementable on a GPU.

The main contribution of this paper is the solution of the
above-mentioned problem. We introduce a parallel version of
Lawson’s optimization process which is completely implemen-
table on a GPU. We further present several optimizations and
improvements of the basic parallel version. In Fig. 1(c) we can see
that our approach gives visually similar results to those of the
original CPU-based approach Fig. 1(b), but its run time on a GPU is
about eight times shorter. While the presented results are
oriented to the image reconstruction problem, the technique is
nearly general and can be applied to any DDT related task and to
arbitrary data distribution.

This paper is structured as follows. In Section 2 we briefly
survey previous work on data-dependent triangulations and on
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Fig. 1. Image magnification at 800 percent using: (a) lanczos filter; (b) a CPU-based data-dependent triangulation and (

show improved reconstruction in the high-frequency areas.

GPU usage in this field. Section 3 introduces the basic concepts of
parallel data-dependent triangulation. Section 4 deals with GPU-
specific implementation details, and presents our data structures.
In Section 5 we present additional modifications and improve-
ments of the original approach. Section 6 analyzes the results and,
finally, in Section 7 we draw conclusions from the results and
outline future work possibilities.

2. Related work

Digital images are 2D arrays of pixels, which are represented
by a pair (x,y) of Cartesian coordinates associated with a color
function value f(x,y). The goal of reconstruction is to provide the
means to evaluate this function at an arbitrary point of the
domain. The main aim is to satisfy the human visual system,
which is a very subjective and generally complex task, since
results with feature preservation and without significant artifacts
are expected. In other words, correct reconstruction of high-
frequency areas (edges), which play an important role in quality
decision by human observers, is required.

The most commonly used techniques are the convolution
based methods known from image processing. The sinc function
is the ideal reconstruction filter, but it is not suitable for practical
use because of its infinite width [13]. In practice, this results
in usage of different, size-limited convolution filters, which,
however, may introduce artifacts as jaggies, blurring, ringing,
etc. The computational complexity of these approaches is
dependent on the size of the reconstruction kernel. In general,
convolution techniques can be considered as computationally
cheap operations compared with other techniques. Efficient
implementations of interpolation by means of various convolu-
tion kernels on the GPU were described e.g. by Hadwiger et al.
[14] and Bjorke [5].

A completely different geometrically based reconstruction
approach, the data-dependent triangulation, was introduced
by Dyn et al. [8]. It fits the processed data values with a
triangle mesh, thus resulting in piecewise linear interpolation.
Contrary to other mesh generation methods, DDT aligns edges to
the underlying data and organizes the triangular structure into
a feature-preserving mesh. Here, the quality of the resulting
triangulation is defined through a special cost function in an
optimization process. DDT was applied to image reconstruction
by Yu et al. [35], while improving the image reconstruction
quality was the topic of our previous work [32]. Battiato et al. [4]
used the concept of DDT to produce vector images from raster
data.

) our GPU-based technique. Results (b) and (c)
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Fig. 2. Illustration of geometric dependencies in 2D data-dependent triangulation.

2.1. Data-dependent triangulation

The DDT approach is less well known than the convolution
techniques. Therefore, we introduce first the necessary definitions
and basic facts about the technique.

Let a set of distinct (and not all collinear) points V=
{Vij=(:,y);i,j=1,...,n} is given in E? (Euclidean two-dimen-
sional space). Triangulation of V is a set of triangles T(V) which
satisfy the following properties:

e each vertex of an arbitrary triangle from T(V) is from V and
each element from V is a vertex of at least one triangle of T(V),

e each edge from the triangulation contains exactly two
elements from V,

e the union of all triangles from T(V) is the convex hull of the set
V, and

e an intersection of two arbitrary triangles from T(V) is an empty
set or their common vertex or their common edge.

Data-dependent triangulation of the above-mentioned set V is a
triangulation whose topology is dependent on a function f(x,y)
with

zij=f(xy), Lj=1,....n,

where z;; are data values, for example, luminance values
converted from RGB color components by standard conversion.
We restrict our considerations to edge based DDTs, where we
assign cost exclusively to edges of the triangulation. There are also
other possibilities, for example, vertex based DDTs [7]. The
relation between the edges and the function f(x,y) can be
arbitrary, but we limit our consideration to the following. Each
interior edge is dependent on the four vertices forming a
quadrilateral (created from two adjacent triangles), which con-
tains the edge as a diagonal. The situation is illustrated in Fig. 2,
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where T; and T, are triangles on a piecewise linear surface, the
common edge is denoted as e and V;; =f(x;,y;), i,j€{0,1}. The
linear polynomials P;(x,y) and P,(x,y) define planes which contain
the triangles T; and T5:

Py(x,y)=a1x+b1y+cy,

Py(X,y) = X +byy+cs.

These polynomials can be used to define several geometrically
based cost functions. Sederberg’s cost function (SCF) depends on
four vertices and uses projection of the T; and T, triangle normals
into the plane xy:

AFe)=IVP;Il - IVP,II-VP; - VP,,
where

VP, =(a;,b), i={1,2}

are the gradients of P;(x,y). Their magnitude is defined by

IVPl = (af +b)'%, i={1,2}.

Several other approaches exist, which assign cost to components
of the triangulation (vertices, edges, triangles, etc.) according to
various geometrically and non-geometrically based criteria [1,7,8].

Generation of DDTs involves a mesh optimization process. The
goal is approximation of a minimum weight triangulation (MWT),
which is a triangulation of the set V with the minimal cost among
all possible triangulations:

> lic(@)ll =min{c(T(V))}, ¥T(V),

e e MWT (V)

c(MWT(V)) =

where ¢(T(V)) marks the cost of the triangulation. NP-hardness of
the MWT problem was proved by Mulzer and Rote [25]. In DDT,
however, the number of the existing heuristics and approxima-
tions [9] of this problem for planar triangulations is reduced
owing to the existence of the edge cost function.

Most of the existing optimization approaches rely on a
common topological operation called edge flip. Every interior
edge is an intersection of two adjacent triangles, which form a
quadrilateral. If the quadrilateral is convex and non-degenerate,
then the edge can be replaced by the other diagonal of the
quadrilateral. This operation is the edge flip. The diagonal edge of
the quadrilateral with the mentioned properties is called locally
optimal if the quadrilateral is optimally (MWT) triangulated. If it
is concave or degenerate then it is also locally optimal. We note
that local optimality of the edge depends on the sum of SCF costs
of five edges (the edge plus four edges of the quadrilateral). Thus,
in its evaluation, information from 12 vertices is processed
(Fig. 2).

The most popular technique for obtaining optimal DDTs is
Lawson’s optimization [8] (also called local optimization) which
works with the edge flipping operation. It processes the edges in
iterations and proves their local optimality. The pseudo-code of
this method is presented in Fig. 3. It is similar to the Delaunay
triangulation [3] for the planar case and, if the cost function

make an arbitrary triangulation
repeat
for (each edge e from triangulation)
if (e is not locally optimal)
flip (e)
endif
endfor
until the locally optimal triangulation is calculated

[e RN e SR R S S

Fig. 3. Pseudo-code of Lawson’s optimization process.

satisfies the well known empty circle property [3], then they are
identical.

An enhancement of this technique, the look-ahead approach,
was presented by Yu et al. [35]. A computationally cheap
modification, the pixel level DDT, was introduced by Su and Willis
[31]. In this very fast triangulation, however, only slightly better
results than in the standard bilinear or bicubic interpolations are
obtained. Apart from the aforementioned deterministic methods,
stochastic optimization techniques were also used in DDT
heuristics of MWT. A simulated annealing approach was described
by Schumaker in [30]. Its application to image compression was
presented by Kreylos et al. [23]. Genetic optimization is another
stochastic process, introduced to DDT by Kolingerova [21]. Recent
results can be found in [22]. Theoretical results dealing with the
number of simultaneously flippable edges in triangulations were
published in [6].

GPU-based approximation of the Voronoi diagram in discrete
space was published in [16,11,27]. The work by Rong et al. [28]
deals with generation of the Delaunay triangulation from the
discrete Voronoi diagram. They use a combination of GPU and
CPU for the computation of the Delaunay triangulation in the
continuous space.

To the best of our knowledge, no work on DDT implementation
in the GPU has been published yet.

3. Parallel data-dependent triangulation

In this section we present a parallel version of the data-
dependent triangulation approach based on Lawson’s optimiza-
tion process introduced in Section 2. We take into account the
possibilities and restrictions of the GPU during the algorithm
design. Technical and implementation details are discussed in
Section 4.

First, we need to define some terminological notions. Under
neighbors of an edge e in triangulation T(V) we mean a set of such
edges from T(V), which create with the edge e a triangle. The set of
neighbors of edge e is denoted as region of degree 1 (1-region).
Following this notion we define the n-region (n > 1) of an edge e in
T(V) as a union of:

e edges from the (n-1)- region of e and
e neighbors of edges from the (n-1)- region of e.

Local optimality of an edge e in DDT triangulations depends on
the selection of the cost function. Therefore, we define region-of-
influence (ROI) of e as a set of such edges, the change (flipping) of
which affects the local optimality of e. For the SCF cost function
introduced earlier this region is of degree 2, and contains 12
edges—see Fig. 4(a).

Edges should be in a parallel version of the triangulation
algorithm processed concurrently, from which some major
restrictions follow. We propose such an iterative algorithm, in
which every iteration consists of three steps: creation of
candidates, acceptance and rejection of candidates and edge flipping.

Fig. 4. (a) Region of degree 2 and (b) region of degree 3 for the edge e.
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3.1. Creation of candidates

In the first step of each iteration we evaluate the cost function for
all edges of the triangulation and classify them in two sets. The first
set consists of locally non-optimal candidate edges, flipping of which
results in decrease of the cost value for the whole triangulation. The
rest of the edges will not be flipped in the current iteration of the
algorithm. As cost evaluations are not influencing each other, they
can be executed concurrently on all edges.

3.2. Acceptance and rejection of candidates

The local optimality of an edge e is influenced by all topological
changes (edge flippings) in its ROI. In Lawson’s optimization
process the edge flippings are done sequentially and therefore it is
not necessary to take this fact into account. The situation is
different, however, in parallel edge processing.

Consider that we have two candidate edges e and f, where fis in
the ROI of e and vice versa. Once we flip one of these, the local
optimality of the other edge also may be changed, i.e. a conflict occurs
(Fig. 5). In order to avoid these conflicts in the algorithm, we have to
select from the candidate set a subset of independent edges, the ROIs
of which do not intersect and which can thus be flipped concurrently.

In other words, we split the set of candidates into two
disjunctive sets of

e rejected edges, which will not be flipped, and
e accepted edges, which can be flipped concurrently.

The edge classification is based on comparison by means of edge
identification numbers (ID s). Each edge has its own, unique ID,
which is assigned to it at the beginning of the algorithm. If an
edge is flipped, it keeps the original ID.

We run the classification process on all edges from the
candidate set. For each candidate edge e it is necessary to test
all edges in its ROL. If at least one accepted edge in the ROI exists,
the edge e is rejected. If there are no accepted edges in such ROI,
then, if its ID has minimal value among all of the candidate edges
in its ROI, the actual edge is added to the set of accepted edges
and removed from the candidate set. If the ID of the edge e is not
minimal then this edge e remains as a candidate and will be
processed in the next iteration of Step 2 of the algorithm.

This process is iterative and continues as long as there are
edges in the candidate set. The set of candidate edges is a finite
set. In each iteration step of this process it is possible to find the
edge with the minimal ID. It is obvious that at least one such edge
is either accepted or rejected in every iteration, and therefore the
number of edges in the candidate set is decreased at least by one
in each iteration step. Hence, this iterative process is always finite.

The described process can be adjusted to the restrictions of the
GPU, as we will describe in Section 4. We note that it is possible to
consider different, more sophisticated techniques, if the CPU
usage is allowed, but that is not our province.

Fig. 5. Conflicting edges e and f before and after parallel edge flipping (in case of e,
edge f should be unaffected and vice versa).

1 repeat

2 AcceptedSet.clear()

3 CandidateSet.clear()

/I —Step 1 —

4 for ( each edge e from triangulation )

5 if (e is not locally optimal )

6 CandidateSet.add(e)

7 endif

8 endfor

/I —Step 2 —

9 while ( exists edge e from CandidateSet )
10 if (exists accepted edge f in the ROI of ¢ )
11 CandidateSet.remove(e) // reject e
12 else
13 if (e.ID < min ( ID of all candidate edges in ROl of ¢ ) )
14 AcceptedSet.add(e)  // accept e
15 CandidateSet.remove(e)

16 else
17 /I e remains candidate, unchanged
18 endif
19 endif
20 endwhile
/I - Step 3 —
21 for (each edge ¢ )
22 if (e from AcceptedSet )
23 flip(e)
24 update data structure(e)
25 else
26 if ( exists accepted edge in 1-region of e ) // neighbor
27 update data structure (e)
28 endif
29 endif
30 endfor

31 until the locally optimal triangulation is calculated

Fig. 6. Pseudo-code of the GPU-friendly parallel Lawson’s optimization algorithm.

3.3. Edge flipping

In the last step of the algorithm we flip in parallel all edges
from the set of accepted edges created in the previous step of the
algorithm. We also update relevant data structures of the edge
being processed, as well as of all edges from its ROL

The whole iterative process is then repeated until a locally
optimal mesh is obtained. The pseudo-code of the algorithm is
detailed in Fig. 6.

4. GPU implementation

In the previous section we proposed an algorithm for parallel
data-dependent triangulation. It has been implemented for
execution in a fragment shader, similar to most of the GPGPU
(general-purpose computation on GPUs [24]) computations. Owing
to this, it is possible to execute this algorithm also on older
programmable graphics accelerators.

One of the main problems in implementation was to map the
triangulation algorithm to the fragments. The most flexible input
data structure for a fragment program is a texture, which can hold
up to four values in its elements—texels. Each texel is represented
by one RGB color channel and a transparency channel A. GPUs can
read from multiple textures and can access arbitrary number of
texels during fragment computations. The main restrictions are in
writing (output), where only a constant number of values can be
written to one framebuffer and the number of these framebuffers
is also limited. Moreover, writing is restricted to a fixed position
defined beforehand, and this position is the same for all output
framebuffers.
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Fig. 7. Initial triangulation (upper left); creating the texture texE from initial triangulation (left) and one texel of the texture texE (right).

4.1. Data structure design

We investigated two possibilities of representing triangulation
data structures on a GPU. The first possibility—referred to as
point-centric approach in [12]—was to represent each vertex of the
triangulation by a fragment. This approach leads to a problem
with the number of ingoing and outgoing edges to each vertex,
since it changes during the optimization process. Such dynamic
structures are difficult to handle effectively on a GPU in general.
For this reason we decided to represent by fragments—referred to
as edge-centric approach in [12]—the edges of the triangulation.
The edge-centric method described in [12] is dealing with the
same issue, but the proposed solution is different from our
approach. Each edge in the triangulation is defined by its two
endpoints—vertices (denoted as main vertices). We extend this
edge data element by the other two vertices from the 1-region of
the edge (denoted as adjacent vertices). The main and adjacent
vertices are those vertices of the triangles which share the
selected edge as a common edge.

The number of edges and vertices in the triangulation is
constant during the optimization process. For each edge its
corresponding data element contains four unique vertex ID s
(the main and adjacent vertices of the edge). The edge data
elements are stored in the texture labeled as texE (see Fig. 7). The
vertex ID s are used for the computations of vertex positions in
the input image and for obtaining luminance information for cost
function evaluation. For this evaluation it is also necessary to
store information about the neighboring edges. The edge-
neighbors data element for an edge e thus consists of four ID s of
the neighboring edges of e. These data elements are stored in the
texture labeled as texN (see Fig. 8). The initial triangulation is
created by connecting the neighboring pixels, as depicted in Fig. 7
(upper left part).

The textures texE and texN hold the necessary topological
information about the triangulation. Additional textures are used
to store information about the candidate edges for the second step
of the algorithm (accepting and rejecting candidates). In that part
we need to read and write from/to texture in each iteration.
Owing to the limitations of the GPU it is necessary to have two
such textures marked as texC;, texC,. These textures are inter-
changed as source and destination (read, write), in every iteration.
In each texel of these textures information is stored, whether the
corresponding edge is candidate, accepted or rejected, together

triangulation - mesh 2D texture

Fig. 8. Representation of the neighboring edges in texN.

with the ID of that edge. The data from the input image are stored
in another texture, which is necessary for the cost computations.
For general purpose computations it is also necessary to use an
additional texture to store real vertex coordinates. In image
reconstruction, however, the vertices form a grid and thus such
texture is not necessary, since the vertex coordinates can be
calculated from the vertex IDs.

In the following we give implementation details for all three
steps of the algorithm, as introduced in Section 3.

4.2. Creation of candidates

In this step of the algorithm, candidates for edge flipping are
selected. In the fragment shader the cost function of an edge is
evaluated, accessing its vertices (from the ROI) by means of their
ID s stored in texN and its neighboring edges using their ID s
stored in texE. This is done simultaneously for each element of the
texture, and thus for all edges in the triangulation.

According to the result of the cost function evaluation the edge
becomes a candidate for flipping or it is locally optimal, in which
case it remains unchanged. If the edge becomes a candidate then
this state is stored (written) to the texture texCy. If the tested edge
is not a candidate, then the given fragment is not written to
texture texC; (is discarded) and the corresponding location
remains unchanged. In this process we can also obtain a number
of candidate edges. We use a feature of the GPU called occlusion
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query to count the written fragments. The obtained number of
candidates is used in the next step of the proposed algorithm
(accepting and rejecting candidates). If the number of candidates
is zero, the calculated triangulation is locally optimal and the
algorithm finishes.

4.3. Accepting and rejecting candidates

In the second step of the technique the candidate edges are
either accepted or rejected. It is an iterative process where the
textures texC; and texC, are mutually exchanged for reading and
writing.

First, we copy the content of texC; to texC, to maintain
candidate information for fragments, which are later discarded.
To handle a candidate edge e, the necessary information
(ID, acceptation status) is in a fragment program obtained from
the untreated candidate edges in its ROI. By treated edge we mean
an edge which has been marked as either accepted or rejected. If
at least one edge from the ROI is marked as accepted, the tested
edge is marked as rejected and this information is written to the
texture. If the ROI of the processed edge does not contain any
accepted edges, we compare the ID s of these untreated edges. If
the processed edge has the minimal ID, then it is accepted and this
information is written to the output. When there is an untreated
edge with a lower ID, the fragment is discarded.

In the above described process some of the candidates are
labeled as accepted or rejected, but untreated edges can still exist
in the candidate set. Therefore this process is repeated until all
candidates are treated. Occlusion query is used in this process to
find the number of the treated candidates. The result is stored,
according to the number of iterations, either in the texture texC,
or in texCs.

4.4. Edge flipping

The edge flipping operation causes the adjacent vertices to be
exchanged with the main vertices. Afterward, information about
the neighbors should also be updated. These changes have to be
written to the textures texE and texN concurrently. This is done by
the technique of multiple render targets. For this process,
however, it is also necessary to read information from both
textures texE and texN. Therefore, we make a copy of these
textures and the copies are used as an input for the fragment
program. Another input texture is one of the textures texCy, texC,,
where information about the accepted candidates is stored.

Owing to architectural restrictions of the GPUs it is not
possible to write to arbitrary positions in a texture, but rather
only to a fixed position. In edge flipping three cases for a
processed edge can occur. The first situation is the simplest, when
neither the tested edge nor its neighbors are flipped. In this case
the untouched values are written to the output (Fig. 9(a)). The
second configuration is the case when only the tested edge is
flipped (Fig. 9(b)). In this case the main vertices are exchanged

a b

C
Fig. 9. Types of edge flipping (the tested edge is marked by the thick solid line, the

flipped edge is marked by the dotted line): (a) no flip; (b) flip of the tested edge
and (c) modification of the neighborhood.

with the adjacent vertices in the texture texE. Naturally, the
correct values should be set also in texN to reflect the changes of
the neighborhood of the flipped edge. The last configuration
occurs when one edge from the neighborhood of the processed
edge e is flipped (Fig. 9(c)). If a neighboring edge is flipped, it
results in a change in the neighborhood information of the edge e.
To handle this situation it is necessary to search the neighborhood
of the tested edge e. If such a change occurs, ID s of the new
neighbors are obtained and written to the output.

4.5. Visualization

As soon as the DDT is calculated it is possible to download
the data structure (textures texN, texE) to the CPU and save the
triangulation in an appropriate format. Visualization of the
triangulation is in this case straightforward. However, there is
also a possibility to use the geometry shader to convert and
render the triangulation directly without downloading the data
structure to the CPU. The resulting triangulation from the
geometry shader can be processed in the fragment units or
directly written to a vertex buffer object for further processing
and visualization. Moreover, the triangulation can be processed
using the transform feedback technique [19]. In the presented
approach both visualization techniques (CPU download based and
geometry shader based) were tested and used.

5. Improvements

In the previous sections we introduced a new, GPU-based
parallel optimization algorithm. Initial tests of this approach
showed some limitations compared with the non-parallel CPU-
based version. First, the GPU-optimized mesh usually had higher
cost than the original CPU-based approach. From the theoretical
point of view this is possible, since for an initial triangulation
numerous mutually different, locally optimal configurations may
exist, which naturally have different costs. Our goal, however, was
not only to generate locally optimal meshes, but also to
approximate a globally optimal solution. Second, we observed
disturbing artifacts which often appeared in edge areas with
certain properties.

The algorithm modifications introduced below were designed
to eliminate these visual artifacts and to lower the cost of the
triangulation. Their influence upon the resulting interpolation is
presented in Fig. 10. The middle row in this figure shows the
difference images (compared with the original image) computed
in the perceptually linear color space.

5.1. ROI expansion

We analyzed the above-mentioned disturbing artifacts de-
picted in Fig. 10(c) showing the basic GPU reconstruction result.
We observed that the artifacts were caused by improperly
oriented triangle edges, which were uniformly distributed along
the high-frequency areas in a distance approximately the size of
the ROI area. Therefore, we expanded the ROI used for the
candidate selection process—step 2, pseudo-code lines 9-20. In
the basic approach this region was of degree 2, which comprises
12 edges. We expanded this region by additional edges to a
3-region. The situation is depicted in Fig. 4(b), where the new
added edges are marked with dashed lines. This modification
partially suppressed the artifacts, and the final cost of the
triangulation was lowered. In the text, this improvement is
referred to as ExpROI. Fig. 10(e) shows its visual contribution in
comparison with the basic GPU algorithm.
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a b o]

source

—
(o]

difference bar

MIN

Fig. 10. Close-up of an image magnified to 1200 percent from a rasterized vector image. The emphasized parts belong to the edge with the most severe artifacts: (a) the
original image; (b) the CPU-based DDT; (c) the basic GPU approach, (d) GPU MaxGain; (e) GPU ExpROI; (f) GPU ExpROI3 and (g) GPU ExpROI MaxGain. The middle row
shows the difference images compared to the original image and the bottom row shows the topology of the corresponding triangulations.

A drawback of the extended ROI was its increased computa-
tional complexity, which resulted in longer execution time of the
corresponding fragment program. We observed, however, that
these artifacts usually originated in the first two iterations of the
basic GPU version. Thus, the costly expanded ROI processing was
necessary only in the first N iterations, where the N can be set by
the user. After these N iterations, the basic approach is used.

In the following we refer to this technique as ExpRoiN. As
illustrated in Fig. 10(f), this modification leads to similar visual
appearance to ExpRoi (Fig. 10(e)).

5.2. Gain maximization

The main goal of this modification is to lower the cost of the
triangulation. Unlike the basic version, where the accepted edges
were selected purely on edge IDs, in this version we take
magnitude of contribution of edge flipping to minimization of
the triangulation cost into account. Now, we not only evaluate the
local edge cost, but we also store its value and use it in the
accepting and rejecting step of the algorithm. When iterating over
the candidate set, the edge with the highest gain (difference
between the cost before and after edge flip) from the ROI of the
current edge is selected. If some of the tested edges in the ROI
have equal maximal gain, then their IDs are used for the decision,
similarly to the basic version.

This modification increases the runtime of the algorithm but
the resulting cost is usually lower and thus better approximates
the global optimum. Simultaneously, this version converges faster
to minimum. Therefore, the drawback of this enhancement is that
we can get stuck in a poorer local optimal configuration,
compared with the situation where decrease of the cost is slower.
A similar behavior was observed in minimization by simulated
annealing with improperly adjusted control parameters [30]. In
[15] an analogous procedure is mentioned, targeting at improve-
ment of a non-parallel version of Lawson’s optimization process.

In the following text this optimization is denoted as MaxGain.
Fig. 10(d) shows its result in comparison with the basic GPU
algorithm. With this modification the cost of the triangulation is
usually lower than that of the basic approach.

The last proposed modification combines the previous
approaches. In concert with our expectations this algorithm

generates triangulations with the lowest cost and best suppres-
sion of visual artifacts within acceptable computation time.
Fig. 10(g) depicts the visual results.

6. Results and optimization

In this section we present time, quality and cost measurements
of the algorithms described in the previous sections. The
approaches were tested on two datasets. The first dataset
contained 12 real-life raster images, which were selected from
commonly used test image sets used in image processing. The
second dataset contained 8 artificial images drawn and rasterized
in a vector graphic editor. Both datasets were iteratively down-
scaled by a factor of two with bilinear filtering to } and eventually
to 1 of the original image size. The down-scaled images had
resolutions from 64 x 64 to 250 x 243 pixels. These down-scaled
images were magnified back to the original size by different
reconstruction approaches. The CPU version of the algorithm was
implemented in the C+ + language. For implementation of the
GPU version we used the OpenGL API and alternatively the
OpenGL Shading Language (glsl) [29] and C for graphics (Cg) [10]
for shader programming. The minimal hardware requirement of
our technique is the Shader Model 3.0 compatibility, which is
available on most of the recent consumer GPUs. We also
investigated usability of the geometry shader for direct calcula-
tion of the DDT. After a detailed analysis, however, we came to the
conclusion that usage of this feature would not be sufficiently
efficient. The measurements were performed on systems
equipped with a Intel Pentium 4 3.0GHz CPU, 1GB RAM and
the NVIDIA GeForce 8800 GTS GPU with 640 MB of memory,
NVIDIA GeForce 9600 GT with 512 MB of memory and ATI Radeon
HD 4770 with 512 MB of memory.

First, we compared runtime of the introduced techniques
against the CPU-based version of the DDT algorithm. This
measurement was split into three parts: initialization, computation
and finalization. In the initialization stage an image was loaded
and the appropriate data structures (initial triangulation) were
generated. In the GPU version, the created textures were also
uploaded to the GPU. In the next stage the computation time of
the locally optimal triangulation generation was measured. In the
last stage the resulting triangulation was saved to the disk.
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Moreover, for the GPU algorithms, the textures were also
downloaded from the GPU to the main memory and converted
to the appropriate format. The measured times are listed in
Table 1, where time-init. is duration of the first, time-comp. of the
second and time-final of the third stage. These times are summed
and listed in the last row of Table 1, marked as time-sum. The
measured times are in seconds, and they are the averaged values
for the images in the selected datasets.

The cost of a triangulation is an important aspect of quality
measuring, since the aim of the introduced algorithms is to
approximate the MWT. Therefore, in Table 1 the costs of the initial
triangulations (marked as cost-init.), costs after the reconstruction
(marked as cost-final) and improvement in percent (marked as
improvement) are also given. The num. of flips is the number of flip
operations performed during the optimization process.

It can be seen from Table 1 that the GPU version was around
6-10 times faster than the CPU-based solution. For the vector
images this speed-up was even higher (25-30 times). Here, we
observed slowdown in the CPU version of the algorithm which
was caused by flipping only a negligible number of edges in the
last iterations. This behavior was caused by the fact that the
rasterized vector images were not corrupted by noise. In the real
images this behavior was not observed.

We tested the proposed algorithms also on various GPUs
which was made possible by the platform independence of the
glsl implementation. The obtained runtime results for the real and
artificial test set are presented in Table 2. They correspond to the
average total time (time-sum) results of Table 1.

We observe that the results for the GeForce 8800 GPU for both
implementations (glsl and Cg) are nearly identical—their differ-
ence is within a few percent—and that the GeForce 9600 GPU is
systematically by about 35 percent faster than the 8800 version.
The situation is, however, different for the implementation on the

Table 1
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ATI GPU, which, depending on the algorithm, shows both speedup
and significant slow down of up to three times longer processing
time in comparison to the GeForce 8800 GPU. This can be
explained by the different internal architecture of NVIDIA and ATI
GPUs, which results in different efficiency of various operations.

The costs of the triangulations obtained on different GPUs
differed only slightly (on decimal positions). This was probably
caused by different internal precision and other architectural
differences of the test GPUs.

The visual quality of the results was evaluated by several
perceptual metrics which are commonly used in image processing
for quality measuring. The selected measurement tools were
correlation, cross-correlation, MSE, SNR [13], UIQI [33], SSIM [34].
Besides the above-mentioned algorithms standard reconstruction
techniques (convolution based image processing methods) were
used for quality comparison: bilinear, b-spline, and Lanczos filter.
We used the ImageMagick package for the convolution [17].
Averaged values obtained in the evaluation of the results are listed
in Table 3. Higher values mean better quality, except for the MSE
where lower values mean a better reconstruction result. From the
results it can be seen that the image reconstruction based on DDT
can compete with the convolution based techniques.

Subjective visual quality represented by the human visual
system cannot be measured with perceptual metrics. For this
reason we include some reconstruction results obtained
by different techniques, and leave the reader to decide about
the quality of the reconstruction approaches—Figs. 11 and 12.
Here, blocky artifacts in the high-frequency areas are noticeable
for the magnifications obtained by the image processing
techniques.

From our visual inspection and from the measured values we
came to the following conclusions. The best-quality results of the
GPU-based algorithms yield the GPU ExpROI 2/3, GPU MaxGain and

The average cost and timing measurements for artificial and real-world scenes (Cg implementation on the NVIDIA GeForce 8800 GTS GPU).

Average of CPU DDT GPU basic GPU GPU GPU ExpROI GPU ExpROI2 GPU ExpROI3 GPU ExpROI4
ExpROI MaxGain MaxGain MaxGain MaxGain MaxGain
Speed and cost measurement—real test set
Cost-init. 1549.901 1549.901 1549.901 1549.901 1549.901 1549.901 1549.901 1549.901
Cost-final 691.641 825.867 795.837 777.825 753.367 754.047 753.288 753.445
Improvement (%) 224.090 187.670 194.751 199.261 205.730 205.544 205.752 205.709
Num. of flips 17727 16440 17089 14808 15066 15109 15105 15092
Time-init. (s) 0.212 0.407 0.518 0.453 0.602 0.601 0.599 0.601
Time-comp. (s) 6.834 0.252 0.619 0.277 0.470 0.518 0.527 0.534
Time-final. (s) 0.221 0.089 0.093 0.087 0.085 0.091 0.089 0.085
Time-sum (s) 7.268 0.749 1.231 0.817 1.158 1.210 1.216 1.221
Speed and cost measurement—artificial test set
Cost-init. 1549.762 1549.762 1549.762 1549.762 1549.762 1549.762 1549.762 1549.762
Cost-final 341.809 432.785 436.413 420.602 365.502 360.335 363.982 363.736
Improvement (%) 453.400 358.090 355.113 368.463 424.009 430.089 425.779 426.068
Num. of flips 8626 7263 7423 6696 7054 7161 7118 7106
Time-init. (s) 0.315 0414 0.520 0.434 0.609 0.604 0.604 0.609
Time-comp. (s) 32.104 0.304 0.526 0.325 0.536 0.570 0.575 0.570
Time-final. (s) 0.331 0.145 0.148 0.151 0.146 0.148 0.143 0.143
Time-sum (s) 32.751 0.864 1.195 0.911 1.291 1.323 1.322 1.322
Table 2
The average timing measurements for various GPUs (glsl implementation).
Average of GPU basic GPU GPU GPU ExpROI GPU ExpROI2 GPU ExpROI3 GPU ExpROI4
ExpROI MaxGain MaxGain MaxGain MaxGain MaxGain
NVIDIA GeForce 8800GTS 0.873 1.225 0.866 1.222 1.169 1.184 1.209
NVIDIA GeForce 9600GT 0.574 0.885 0.551 0.820 0.741 0.753 0.762
ATI Radeon HD 4770 0.608 1.354 0.644 3.962 4.027 4.020 4.015
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Table 3
The average quality of the reconstruction results, measured by perceptual metrics.

Average of Bilinear b-spline Lanczos CPU DDT GPU basic GPU GPU ExpROI ExpROI2 ExpROI3
filter filter filter ExpROI MaxGain MaxGain MaxGain MaxGain

Quality measurement—real test set

Correlation 96.0142 95.3072 96.3722 96.1783 96.1418 96.1573 96.1485 96.1587 96.1600 96.1590
(%)

Cross cor. (%) 94.7434 93.3080 95.5652 95.2463 95.1506 95.1779 95.1618 95.1725 95.1693 95.1728

MSE 294.4280 377.7320 249.8240 267.5770 272.8820 270.6890 272.2040 270.8790 270.7290 270.8010

SNR (dB) 17.7444 16.6075 18.5715 18.2452 18.1580 18.1989 18.1713 18.1914 18.1952 18.1927

UIQI 0.3611 0.2966 0.4100 0.3875 0.3830 0.3848 0.3833 0.3847 0.3847 0.3847

SSIM 0.6359 0.5956 0.6609 0.6518 0.6487 0.6500 0.6491 0.6499 0.6500 0.6500

Quality measurement—artificial test set

Correlation 97.8322 97.1695 98.1455 98.2470 98.1522 98.1715 98.1570 98.1982 98.2057 98.2007
(%)

Cross cor. (%) 97.1942 95.8883 97.9042 97.7710 97.6275 97.6450 97.6162 97.6887 97.6992 97.6920

MSE 343.4650 500.5060 253.4830 268.1490 286.9160 283.8380 287.4920 278.8990 277.2380 278.3750

SNR (dB) 21.2149 19.7293 22.5276 22.3261 22.0282 22.0616 22.0196 22.1660 22.1865 22.1702

uIQI 0.6953 0.6228 0.5738 0.7806 0.7757 0.7772 0.7760 0.7782 0.7785 0.7783

SSIM 0.9019 0.8798 0.9099 0.9203 0.9156 0.9165 0.9159 0.9179 0.9183 0.9180

Fig. 11. Reconstruction results at 400 percent magnification: (a) original image; (b) bilinear filter; (c) b-spline filter; (d) Lanczos filter; (e) CPU-based DDT; (f) basic GPU

approach and (g) GPU ExpROI MaxGain modification.

the GPU ExpROI MaxGain algorithms. The shorter runtime of the GPU
ExpROI MaxGain algorithm compared with the runtime of the GPU
ExpROI 2/3 MaxGain algorithm was unexpected. We expected that
algorithms which used expanded region of the neighborhood
control only for a couple of first iterations (GPU ExpROI 2/3 MaxGain)
would be faster than GPU ExpROI MaxGain, which used this
expanded region for all iterations. Test results are opposite to our
expectations. This behavior is probably caused by fragment program
switching during the computation, which is a costly operation.
Exact analytical descriptions of the time complexity of the
introduced algorithms depends on numerous factors such as the
type of the selected cost function, data distribution, etc. Moreover,
these factors are specific for each area of application. Thus, such
complex analysis exceeds the ambition of this paper. Analysis of

time complexity for an approach similar to our acceptation and
rejection of candidates is presented in [18].

Instead, we measured the time complexity of the image
reconstruction problem in an empirical way. A set of 91
differently sized pictures was selected from a set of standardly
used image processing test images. The results are presented in
Fig. 13 (Dataset 1) where the dependency between the runtime of
the GPU ExpROI MaxGain algorithm and the size of the source
image is depicted. We observe linear growth for small and
medium images and faster-than-linear growth for the largest
ones. We also observe some outliers, the run time of which clearly
exceeds run time of other images with similar size. This was
probably caused by a “nearly worst case” distribution of the edges
from the point of view of parallel processing. The number of these
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&

Fig. 12. Reconstruction results at 400 percent magnification: (a) original image; (b) bilinear filter; (c) Lanczos filter; (d) CPU-based DDT and (e) GPU ExpROI2 Max Gain

modification.
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Fig. 13. Run time of the GPU ExpROI MaxGain algorithm (400 percent magnification) measured on Dataset 1 and Dataset 2.

outliers compared to the size of the dataset is not significant. We
also used a second dataset which was generated from one selected
image from Dataset 1 by resizing it to the same resolutions as
images in Dataset 1. This set is denoted as Dataset 2 in Fig. 13. We
see a similar time dependency, however, without any outliers.

7. Conclusion and future work

In this work we introduced an efficient technique for parallel
optimization of data-dependent triangulations on a GPU.
Specifically, we focused our attention on the image reconstruction

problem—image magnification. The technique was compared
using several perceptual metrics and visual inspection with
traditional serial DDT implementations on a CPU, as well as with
appropriate image processing based interpolation techniques by
convolution. The visual quality of the results was similar to that
obtained by the serial approach and superior to the results
obtained by the convolution techniques. From the point of view of
perceptual metrics the results were comparable. Thanks to
parallelization and GPU implementation our approach to DDT
was up to eight times faster on average than the serial
implementation. We have proposed various modifications which
lead to improved visual quality.
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Our solution to the data-dependent triangulation problem,
based on our parallelization of Lawson’s optimization process, is
general and allows us to compute locally optimal triangulations
using various cost functions on the graphics hardware. These
algorithms can be fitted to special optimization tasks, and can also
provide locally optimal meshes with different properties outside
the area of image processing. This means that it can be fitted to
arbitrary data distribution and arbitrary optimization tasks
related to the DDT approach.

Both the CPU and GPU versions require an initial triangulation. In
the image reconstruction problem this task is simple and can be
performed on a GPU in a very efficient and fast way. In other
application areas, however, the initial triangulation may be imple-
mentable solely on a CPU and thus the created data structures have
then to be transferred to the GPU for optimization.

The introduced technique has a big potential in image recon-
struction, as we showed in Section 6. In our future work we intend
to combine the new DDT technique with the standard convolution
techniques. From this combination we expect more visually pleasant
and faster image reconstruction. Further improvement of the
introduced algorithms can enhance the quality of the generated
locally optimal meshes. There is also an additional possibility how to
improve performance of the computations both for the CPU and GPU
versions of the algorithms. This optimization is related to the edge
flipping operation in locally optimal triangulations. After the first
iteration it is enough to test only the local optimality of edges from
the ROI of the flipped edges in the previous iteration step. Since this
change also requires changes in the data structures, we would like to
investigate this feature in our future work. We further speculate on
the possibility of implementing certain non-deterministic ap-
proaches like simulated annealing or genetic algorithms on a GPU.

New technologies, such as CUDA [26] and ATI Stream [2] can be
used for computations of locally optimal meshes on the GPU too.
These APIs reduce or eliminate some of the OpenGL restrictions
and provide better programming flexibility and memory manage-
ment. On the other side, the solution must be designed for a
specific target hardware. Therefore, in our future work, we want
to take advantage of the new OpenCL [20] standard, which enables
to write hardware independent code to be executed on multi CPU
systems as well as on various types of GPUs.
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