
3D Data Processing
Volume Visualization

3D File Format

Miloš ŠRÁMEK, Leonid I. DIMITROV, Matúš STRAKA and Michal ČERVEŇANSKÝ ∗

THE F3D TOOLS FOR PROCESSING AND VISUALIZATION
OF VOLUMETRIC DATA

In this paper we introduce the f3d format for storage of volumetric data together with a suite of tools for
processing, segmentation and visualization of such data. Both the format and tools were developed for a
highly variable and rapidly evolving academic environment, where new data processing and visualization
tasks emerge very often. The tools address all the steps of a volume visualization pipeline: starting with
import of external formats, over preprocessing, filtering, segmentation to interactive visualization.

1 INTRODUCTION

Volume visualization is a complex task which consists of several consecutive steps, such as data
preprocessing, filtering, segmentation and, finally, rendering. Although specialized systems and au-
tomatic applications exist optimized for processing of data with special properties, a researcher in an
academic environment often encounters a situation, when it is necessary to process an unknown data
set in a very specific manner. Such demands can be defined, for example, by other researchers or in
debugging a data processing algorithm. In such a situation, a set of simple-to-use flexible general-
purpose tools for processing of volumetric data may come in handy.

In this paper, we describe one such suite of tools, which was built at the Commission for Scien-
tific Visualization of the Austrian Academy of Sciences around the f3d data file format. The suite
consists of a set of command-line programs which accomplish different preprocessing tasks (Sec-
tion 2), together with interactive applications for 3D data segmentation (Section 3) and visualization
(Section 4).

All these tools are single purpose ones, bound together by the common data format, the f3d.
However, by a proper tool selection and ordering according to the demands of the given task, one can
often achieve very high goals.

2 THE F3D FORMAT

At the core of the utilities described in this paper stands the f3d format (format 3 dimensional,
[1]) which is, as we hope, both simple and versatile enough to address the demands of labs, groups
or individual researchers on representation and manipulation of Cartesian, regular and rectilinear grid

∗Commission for Scientific Visualization (VISKOM), Austrian Academy of Sciences, Vienna, Austria.
milos.sramek@oeaw.ac.at

data. Currently, the format supports properties, which we found to be important from the point of view
of our experience. However, f3d is distributed as free software, which hopefully will encourage other
contributors to add their own features, extensions and tools.

The f3d implementation provides a set of simple and flexible C language routines for reading
and writing files, which provides for a steep learning curve for novices and enables easy porting to
existing applications. Additionally, a set of tools based on a high-level C++ class library is provided
for format conversions, geometric transforms, filtering and other operations with volumetric data.
These tools are simple and flexible Unix-like filters, which can be concatenated by piping in order to
achieve the desired effects:

tool1 [sw] in.f3d | tool2 [sw] | | toolN [sw] > out.f3d,

where sw stands for optional switches. The name of the input file is an optional argument. If not
used, the data are read from the standard input. The output data are always written to the standard
output.

Format conversion routines are necessary both to enable the import of data in different formats into
the f3d environment and, occasionally, to export f3d data to other environments (although porting
of different applications to read/write f3d data is quite simple—unfortunately, one needs access to
the application’s source code, which is not always possible, since many authors tend to hide their
code). Currently, input and output filters for conversion of 3D raw data, stacks of pnm images and
16-bit slices exist, together with routines for reading the VTK and DICOM formats.

For example, the following command should be used to convert a 256×256×128 raw data set of
32 bit voxels (the -l 5 switch) with reversed byte (the -r switch) order:

raw2f3d -i in.raw -r -l 5 -s 256 256 128 > out.f3d,

For any tool, the -h or --help switch prints a brief description and a list of its switches.

Point operators are programs, which modify values of individual voxels independently of their neigh-
bors. The f3d2f3d program converts the type of voxels (e.g. 8 bit integers to floats) and can be also
used to change data contrast. Further, f3dinvert inverts the image, f3dthresh thresholds the
data by upper and lower thresholds and f3dbit combines each voxel with a specified pattern (oper-
ations as addition, subtraction, multiplication, and, or, max and min are possible). The f3darith
does a similar thing, but between corresponding voxels of two different volumes. A binary mask (e.g.,
created by the f3dthreshold tool) can be used by f3dmask to delete (set to 0) large areas of a
volume. For example, bone can be deleted from a volume "in.f3d" by

f3dthresh -lo 90 in.f3d | f3dmask -i in.f3d > out.f3d.

Volume filters are filters in the sense of the signal processing theory. They implement local oper-

ations on the input data set, i.e., the output voxel value is computed from the values of voxels in
a local neighborhood of the corresponding input voxel. The size of the neighborhood depends on
the given operation and can span the range from few to many voxels. The following programs fall
in this category: f3dmax, f3dmin and f3dmedian take maximum, minimum and median value
of a 6-, 18- or 26-neighborhood respectively, f3dgauss smoothes the data by the Gaussian filter,
(Fig 1a), f3dgabor computes a smoothed partial derivative of the image by means of the Gabor
filter (derivative of the Gaussian) f3dgrad computes gradient of the data (the Gabor filter applied
in all 3 directions, the output data has 3 bands, Fig 1b), f3dgradmag computes magnitude of the
Gabor gradient (Fig 1c) and, finally, f3dprewitt detects edges by the Prewitt filter.

Certain operations (e.g., the f3dgabor and f3dgradmag filters) should not be applied to un-
signed data types or types with low precision (8 or 16 bits), either because subtraction of such vari-
ables may lead to erroneous results (always nonnegative) or truncation errors deteriorate the result.
Therefore, such types should be first converted to signed types with higher precision, preferably to
float. E.g., in order to enhance edges of an 8 bit data volume one has to use the following command:

f3d2f3d -d 7 in.f3d | f3dgradmag -w 3 > out.f3d,

where the -d 7 switch of the f3d2f3d program converts voxels to floats and the -w 3 switch
defines the sigma value of the filter kernel.

(a) (b) (c)

Figure 1: A slice of a 3D dataset: (a) Gaussian smoothing by f3dgauss, (b) gradients computed by
f3dgrad and (c) edge enhancement by f3dgradmag.

Global operators are represented by tools which modify the whole volume and eventually even
change its dimensions. f3diso resamples non-Cartesian grids to cubic voxels with the possibility
to select nearest neighbor, trilinear or tricubic interpolation. f3dcrop can be used to delete outside
layers of voxels, while the f3dpaste tool can insert one volume into another, with different pos-
sibilities to combine their voxels (see the f3darith tool). f3dpaste can be also used to merge
bands of two different files, or, with the help of f3dnew, to pad a volume with a layer of voxels.

The f3drot and f3dtrans programs implement geometric transforms of 3D data sets. While
the first one can be used only to rotate a volume around the coordinate axes in 90 degree multiples,
in f3dtrans all combinations of arbitrary rotations, translations and scalings can be used. Fur-
ther, similarly to f3diso, three types of interpolation techniques can be defined. The f3ddist,
f3dlabel and f3dffill work with binary input data, where 0 represents background and non-
zero represents objects. f3ddist computes distance transforms, both signed (negative distances are
assigned to object interiors) and unsigned. Three types of distances can be computed: chessboard,
cityblock and the 3-4-5 chamfer distance (Figure 2). As we can see in the figure, these types of dis-
tance transforms only roughly approximate the Euclidean distance. A much higher precision can be
obtained by the f3dfmm tool, which computes the distance by solving the Eikonal equation by the
fast marching technique [2]. By means of distance transforms and thresholding one can efficiently
implement different morphologic operations (dilation, erosion, opening and closing), even with large
structuring elements. For example,

f3dthresh -lo 90 in.f3d | f3ddist -chu | f3dthresh -lo 5>out.f3d

dilates an object identified by thresholding at level 90, while

f3dthresh -lo 90 in.f3d | f3ddist -chu | f3dthresh -lo 5 |

| f3ddist -chu | f3dthresh -lo 5>out.f3d

computes closing thereof (Figure 3). Here, the unsigned 3-4-5 chamfer distance was used (the -chu
switch) with a size 5 structuring element. The f3dlabel scans the volume and labels the back-
ground and all the objects by unique labels, while the f3dffill can either keep or delete (the -d
switch) a single region identified by a seed point.

The 3D fast Fourier transform is implemented in f3dfft. In combination with masks produced
by the vxt tools it enables the implementation of various filtering schemes with large filtering kernels.
vxt is another package working with the f3d format, aimed at voxelization of geometric objects [3].

(a) (b) (c)

Figure 2: A slice of the 3D distance transform of a skull (identified by thresholding at level 90 by
means of f3dthresh: (a) chessboard, (b) cityblock and (c) 3-4-5 chamfer distance.

(a) (b) (c)

Figure 3: Morphologic operations: (b) dilation of (a) using distance transforms, equivalent to using
a 5 × 5 × 5 approximation of a spherical structuring element. (c) closing of (a) using the same
parameters.

The Watershed Transform: the aim of the watershed based image segmentation technique is to
split images into spatially homogeneous regions, which can be further processed by different image
analysis tools [4, 5]. The watershed segmentation technique is based on the interpretation of an image

as a topographic relief and on the simulation of flow of water along steepest descent paths called
downstreams. Thus, for each local minimum of the image, a drainage region is defined, which, if
computed for a gradient image, represents an area with approximately constant properties.

The computation of the watershed transform in this case consists of 3 steps: it is necessary to
compute the gradient magnitude of the input volume, to identify the local minima, and to label them
by unique labels:

f3dgradmag -w 3.0 in.f3d | tee grad.f3d |

| f3dlocmin | f3d2f3d -d 5 | f3dlabel > labels.f3d

The f3d2f3d -d 5 changes the volume representation to the int type, since the expected number
of regions (minima) is very high. The gradient magnitude volume will be used in the second step and
therefore it is stored in an auxiliary file grad.f3d by the standard Unix tee command. In the
second step, the f3dwatershed program computes the watershed transform and sends the result,
where each watershed region is assigned the same label as the corresponding local minimum, to its
standard output. In this form it can be used by other programs for further analysis [5]. In order to
show the results in a form suitable for viewing by a human, is is useful to detect the edges of the
watershed region (f3dedge) and overlay them over the original image by pasting the edge volume
into a new band (the -b switch) of the original:

f3dwatershed -m labels.f3d grad.f3d | f3dedge |

| f3dpaste -b in.f3d > out.f3d

(a) (b) (c)

Figure 4: The watershed transform: (a) a slice of the original data set, (b) detected regions and (c)
region edges overlayed over the original.

3 3D DATA SEGMENTATION BY ISEG

Segmentation of volumetric data sets is often a prerequisite for the subsequent visualization step.
Here, the scope of segmentation tasks extends from simple ones, as e.g. recognition of the whole
object in the background or segmentation of the bone, which has much higher density that soft tissue
in CT tomograms, to tasks, which are even hard to formulate as e.g. the segmentation of small brain
structures in MR images.

The interactive segmentation method implemented in iseg is based on thresholding and repeated
application of morphologic and connected component labeling operations. Since different tissues can
have densities from overlapping intervals, a situation when more than the desired object is marked
is possible. Separation of such regions can be done on the presumption of object connectivity. The
connectivity analysis can be implemented by a region filling algorithm (say flood fill). Since connec-
tivity is a spatial property, which means that we cannot decide whether the given voxel belongs to the
object or not in one slice, a 3D version of this algorithm is used.

The backbone of the segmentation program consists of three 3D buffers: an input buffer for the
original data, a work buffer and an output buffer for storing of up to 256 non-overlapping objects.
The work buffer is used for the morphological, labeling and manual editing operations as well as for
logical operations between objects. The user has the possibility to view the contents of the buffers
directly (3 consecutive slices or 3 mutually perpendicular cuts) and to render either some or all objects
stored in the output buffer (6 orthographic projections).

4 3D DATA VISUALIZATION

fd3view: A Slice Viewer. The f3dview viewer serves as the basic tool for visualization of f3d
data. It is a slice viewer, i.e. it enables the display of only orthogonal 2D cuts through the data.
However, in spite of this limitation it is the most useful visualization tool in development of 3D data
processing applications, since it enables the access of individual voxels, which helps the developer in
debugging a misbehaving code. The f3dview viewer, besides its basic functionality, allows the user
to modify the data contrast via lookup tables in order to improve the visibility of details of interest.
The zoom-in function is not implemented, since it can be acieved easily by external tools as, e.g.,
xmag.

f3drender: A simple command-line renderer. The f3drender tool is the simplest of the 3D
rendering programs working with the f3d data. It is a command line program which can render data
only in 6 axis aligned directions with no magnification—the rendered image has exactly the same
size as the corresponding volume crossection—which can be used with advantage in data inspection
and algorithm testing. Several rendering modes are supported: reprojection, maximum/minimum
intensity projection and surface rendering of thresholded and segmented data.

vrnd: Software-Based Rendering of Segmented Data. vrnd is a versatile interactive renderer
based on volumetric ray tracing with a text command interface and scripting possibilities. It is pre-
dominantly oriented towards visualization of segmented data (the iseg segmentator can even output
a vrnd script tailored to the actual data and therein segmented objects) and implements several sur-
face and volume rendering techniques (Fig. 5). To its numerous features belong different volume
and surface interpolation modes (voxel/subvoxel rendering), different normal estimation techniques
(graylevel gradients, centroidal shading of binary data1, shadows, reflections, multiple lights, shaded
cutplanes and parallel and perspective rendering. In vrnd up to 64 different objects can be defined,
each with its own color, transparency and a set of mutually orthogonal cut planes. For all volume
rendering modes (shaded/unshaded blending, maximum intensity projection) piecewise linear lookup
tables are used to set color and transparency of the data.

The vrnd tool can be controlled by a simple command line interface. However, it is also equipped
with scripting possibilities, which enable the rendering of animations with hundreds of images easily.

(a) (b) (c)

Figure 5: Examples of tomographic data segmented by iseg and rendered by vrnd: (a) skeleton of
a human hand, all bones were identified and labeled, (b) a skull with cut planes, (c) a human head
with different objects identified and rendered with transparency.

fdvr: Interactive Rendering by Texture Mapping. The last in the list of f3d data visualiza-
tion tools, the fd3vr, is an interactive hardware-based tool, which takes advantage of the capa-
bilities provided by the modern programmable graphics accelerators [6]. Different techniques are
implemented—2D and 3D texture-based rendering, color and transparency lookup tables and frag-
ment program based illumination, shading and classification (Fig. 6). As such, fd3vr serves two
purposes. Firstly, it is a data exploration tool, which can be used for visualization of any kind of
scalar volumetric data. Secondly, due to the large number of implemented techniques, it is used to
demonstrate different volume visualization techniques in education.

(a) (b)

Figure 6: Shaded images rendered by fd3vr. (a) colors modulated by gradient vector components,
(b) shaded surfaces enhanced by gradient magnitude. Cg programming was used to obtain these
effects.

1In a 3× 3× 3 or 5 × 5 × 5 voxel neighborhood centroids Co of object voxels and Cb of background voxels are
computed. Then the surface normal is estimated as ||Cb −Co||.

5 Conclusion and Future Work

We have introduced the the f3d suite for processing, segmentation and visualization of 3D data.
Although most of the examples were taken from the area of medical imaging, the presented tools are
by no means specialized and can be used to accomplish similar tasks with data coming from arbitrary
sources.

Not all existing tools working with f3d data were described here. The vxt package allows to
voxelize (i.e., to convert from analytic to volumetric form) different kinds of geometric objects [3].
Such volumetric object models can be subsequently simply used for object rendering, or can play the
role of artificial phantoms in development and testing of new algorithms for 3D data processing. The
f3d format and the f3d C++ class library are used in the core of the AngioVis software, which is
aimed at visualization and evaluation of pathological lower extremity vessels by means of CT An-
giography data [7]. Another rendering package, VORTEX [8], is aimed at visualization and mapping
of unstructured sampled data onto surfaces defined by 3D grids. Further, the f3d suite is used in
education at universities in Bratislava, Slovakia and Vienna, Austria. Btw, some tools were written as
student projects and master theses.

The f3d suite is free software 2, and as such can be used by everybody and everybody has access
to its source code3. In this sense, we invite anybody to cooperate by using our software, reporting
bugs, improving it or even creating new tools.

BIBLIOGRAPHY

[1] M. Šrámek and L. I. Dimitrov. f3d — a file format and tools for storage and manipulation of volumetric
data sets. In G. M. Cortelazzo and C. Guerra, editors, 1st International Symposium on 3D Data Processing,
Visualization and Transmission, pages 368–371. IEEE Computer Society, Padova, Italy, June 2002.

[2] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999.

[3] M. Šrámek and A. Kaufman. Alias-free voxelization of geometric objects. IEEE Transactions on Visual-
ization and Computer Graphics, 5(3):251–266, 1999.

[4] M. Šrámek and L. I. Dimitrov. Segmentation of tomographic data by hierarchical watershed transform.
Journal of Medical Informatics and Technologies, 3:MI–161–MI–169, 2002.

[5] M. Straka, A. La Cruz, A. Köchl, M. Šrámek, E. Gröller, and D. Fleischmann. 3D Watershed Transform
Combined with a Probabilistic Atlas for Medical Image Segmentation. Journal of Medical Informatics &
Technologies, 6:IT 69–IT 78, 2003.

[6] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and tomographic reconstruction using
texture mapping hardware. In Proceedings 1994 Symposium on Volume Visualization, pages 91–98, Wash-
ington, D.C., 1994. ACM SIGGRAPH.

[7] M. Straka, M. Cervenansky, A. La Cruz, A. Köchl, M. Šrámek, E. Gröller, and D. Fleischmann. The
vesselglyph: Focus & context visualization in CT-angiography. In Proceedings of the Visualization’04
Conference, October 2004. accepted.

[8] L.I. Dimitrov. Texturing 3D-reconstructions of the human brain with EEG-activity maps. Human Brain
Mapping, 6(4):–, 1998.

2http://www.fsf.org, http://www.opensource.org
3http://www.viskom.oeaw.ac.at/~milos

