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Abstract

In this paper, we study theC1 Hermite interpolation problem using Minkowski Pythagorean Hodograph (M
quartics inR2,1. As a preliminary step, we characterize MPH curves inR2,1 by the roots of the hodographs of the
complexified spine curves. We present two schemes for this interpolation problem: one is a subdivision
using directC1 interpolation and the other is a two step scheme using a new concept,C1/2 interpolation.
 2003 Elsevier B.V. All rights reserved.

Keywords:Pythagorean hodograph; Minkowski Pythagorean hodograph;C1 Hermite interpolation; Subdivision scheme;C1/2

Hermite interpolation

1. Introduction

Pythagorean hodograph curves introduced by Farouki (Farouki and Sakkalis, 1990) have the
in the rational parameterization of curves and surfaces in the practical field of computer aided ge
design. After Farouki’s introduction of Pythagorean Hodograph Curves, there has been vast res
on this class of curves by himself and others (Farouki, 1992, 1994, 1996, 1997; Farouki et al.
Walton and Meek, 1996) and some related ones on a special class of curves called Min
Pythagorean hodograph curves (MPH curves) (Moon, 1999; Choi et al., 1999, 2002; Choi an
2000).

MPH curves introduced by Moon (1999) also have their roots in the rational parametrization of
and surfaces. For example, as Hilgarter et al. (1999) pointed out, the offset with varying distance f
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ever,
r(t) given by the spine curvem(t) in R
2 admits a rational parameterization overR in accordance with

m(t) if and only if (m(t), r(t)) is a MPH curve inR2,1. Of course, if the radius functionr(t) is constant,
then the offset reduced to the classical offset and MPH condition reduce to PH condition. Fo
surface which is the envelope of one parameter family of moving spheres, we know that the canal
given by the spine curvem and the radius functionr admits a rational parameterization over the real
accordance with the spine curvem if and only if (m, r) is a space-like curve (Hilgarter et al., 199
Peternell and Pottmann, 1997) which is a natural model of the one parameter family of s
of varying radius inR

n that its spine curve ism and its radius function isr(t) in the Minkowski
spaceR

n,1. However, the rational parametrization of canal surfaces given by a space-like curve(m, r)

requires the factorization procedure in the rational parametrization algorithm (Hilgarter et al.,
Peternell and Pottmann, 1997) spending the computational cost. On the other hand, if we res
spine curve of canal surface to the MPH curve, then factorization procedure is not required.

The medial axis transform, in symbolsMAT(∗), closely related to swept volume of spheres is defi
to be the set of pairs consisting of centers and radii of the spheres, in other words the image
cyclographical mapping of spheres, maximally inscribed in the domain. MPH curves are also u
compute the medial axis transform of a domain (Choi et al., 1999). Consider an one paramete
C = {B(m(t), r(t)) | t ∈ I } of spheres of radius functionr(t) with spine curvem(t). The swept volume
of C, in symbolsSV(C), is determined by the envelope of spheres

⋃{B(m(t), r(t)) | t ∈ I }. If the curve
(m, r) embedded in the Minkowski spaceRn,1 is a MPH curve, the boundary of the swept volume
be rationally parametrized more efficiently as stated in offset cases. Especially inR

2,1, for Ω = SV(C)
we have the following results which explain the interesting relation between the swept volume a
medial axis transform;

MAT(Ω) �= C,
SV

(
MAT

(
SV(C)

))=SV(C),
where

MAT(Ω)= {
(m, r) | dist(p,m)= r = dist(q,m), for somep,q ∈ ∂Ω s.t.p �= q

}
if (m, r) is a MPH curve.

In this paper, we focus on MPH curves in the Minkowski spaceR
2,1. In the first part of this pape

we characterize MPH curves by the roots of the hodographs of them using the complex repres
of plane curves introduced by Farouki (1994). By this characterization, we find regular MPH curv
have even degree even though regular PH curves admit only odd degree. This means that for
interpolation, in case of MPH curves, the required degree for MPH curve is less than that of PH
For example, forC1 interpolation, we do not need MPH quintic curves as expected in the PH co
MPH quartic curvesare enough. In the second part of this paper, we solveC1 Hermite interpolation
problem with MPH quartic curves. For graphical applications,G1 interpolation is sufficient. Howeve
for tool path generation, we needC1 (or higher) interpolation. We know that forC1 interpolation, the
cubic polynomials are sufficient in general case and the PH quintic curves are needed in the p
curve context (Farouki and Neff, 1995; Moon et al., 2001). In the space PH context, PH cubic
were used inG1 interpolation problem in (Jüttler and Mäuer, 1999). Recently Farouki et al. solveC1

Hermite interpolation problem with helical PH quintic space curves and spatialC2 Hermite interpolation
problem with PH quintic curves in (Farouki et al., 2003b) and (Farouki et al., 2003a), respectively.
MPH context,G1 interpolation using the MPH cubic curves is studied in (Choi et al., 1999). How
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C1 interpolation is not achieved until now. In this paper, we achieve it with MPH quartic curves
C1/2 interpolationexplained in Section 4.

2. Roots characterization of MPH curves

Recently, Moon (1999) showed that the necessary and sufficient condition for a polynomial
γ (t)= (a(t), b(t), c(t)) in the three-dimensional Minkowski spaceR

2,1 to be PH is that for its velocity
functionσ (t) (,that is,σ (t)2= a′(t)2+ b′(t)2− c′(t)2) there exist four polynomial functionsu(t), v(t),
ρ(t), ω(t) satisfying the following relations:

σ (t)= u(t)2+ v(t)2− ω(t)2− ρ(t)2,

a′(t)= u(t)2− v(t)2+ω(t)2− ρ(t)2,

b′(t)= 2u(t)v(t)− 2ρ(t)ω(t),

c′(t)= 2u(t)ω(t)− 2ρ(t)v(t).

In this section, we reformulate this theorem into more convenient and useful form using co
representation. We will seek the results which can be obtained by observing the roots of polyn
in complex representation as in the characterization of PH curves by their roots (Ahn and Kim, t.a

Definition 1. Two complex numbersz1,z2 aresemiequalif z1= z2 or z1 = z2, (denote byz1 ≈ z2) and
z1, z2 are distinct up to conjugate ifz1, z2 are not semiequal.

Definition 2. For a real polynomialh(t) such thath(t)� 0 for all t , denote[h(t)] the set of all polynomia
curvesα(t) such thata(t)2+ b(t)2 = h(t). We say that two polynomial curvesα1(t)= (a(t), b(t)) and
β(t)= (c(t), d(t)) are of the same class[h(t)] if a(t)2+b(t)2= c(t)2+d(t)2= h(t). A polynomialf (t)
is a member of[h(t)] if there exists a polynomialg(t) such thatβ(t)= (f (t), g(t)) orβ(t)= (g(t), f (t))

is a member of[h(t)].

Theorem 3. A polynomial curveα(t)= (a(t), b(t), c(t)) in the three-dimensional Minkowski spaceR
2,1

is a MPH curve if and only ifc′(t) is a member of[a′(t)2+ b′(t)2].

Proof. Supposeα(t) is a MPH curve, that is, its velocity functionσ (t) = (a′(t)2+ b′(t)2− c′(t)2)1/2
is a member ofP[t]. Thus,a′(t)2 + b′(t)2 = c′(t)2 + σ (t)2. That is,c′(t) is a member of the clas
[a′(t)2+ b′(t)2].

Conversely, ifc′(t) is a member of the class[a′(t)2+ b′(t)2], then there exists a polynomialk(t) such
that a′(t)2+ b′(t)2 = c′(t)2+ k(t)2. This polynomialk(t) is a velocity function of a polynomial curv
α(t) in the three-dimensional MinkowskiR

2,1, and henceα(t) is a MPH curve. ✷
The above theorem has an important meaning:Given a nonnegative polynomialh(t), we can determine

MPH curves inR2,1 whose velocity functions are members of the equivalence class[h(t]). To make this
fact more clear, we need the relation between the members of the class[h(t)].
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Lemma 4. Suppose two plane polynomial curvesα1(t)= (a1(t), b1(t)) andα2(t)= (a2(t), b2(t)) are of
the same class[h(t)]. Assume the complexified curvesβj (t)= aj (t)+ ibj (t) for j = 1,2 are factorized
over the field of complex numbersC. Then each root ofβ1(t) is semi-equal to one of the roots ofβ2(t).

Proof. By the assumption,‖β1(t)‖2 = ‖β2(t)‖2 = h(t). Let ri for 1 � i � k1 be the real zeros ofh(t)
andcj , cj for 1 � j � k2 the complex (not real) zeros ofh(t) and their conjugates. Clearly,ris are zeros
of bothβ1 andβ2 and all complex (not real) zeros ofβ1 andβ2 must becj or cj for all j . That is, each
root ofβ1(t) is semi-equal to one of the roots ofβ2(t). ✷

Theorem 3 and Lemma 4 tell us that if a polynomial curveα(t) = (a(t), b(t), c(t)) in the three-
dimensional Minkowski spaceR2,1 is a MPH curve, thenα is controlled by the plane polynomia
curve α̃(t) = (a(t), b(t)) and the possible forms ofα are completely determined by the linear fact
of complexified hodograph of̃α. In summary, we get the following theorem.

Theorem 5. Supposeα(t)= (a(t), b(t), c(t)) is a polynomial curve in the three-dimensional Minkow
spaceR

2,1. Let t − ri (1 � i � k1) and t − cj (1 � j � k2) be the linear factors with real coefficien
and with complex coefficients of a complexified plane polynomial curveγ (t)= a′(t)+ ib′(t). (That is,
γ (t)= k

∏k1
i=1(t − ri)

∏k2
j=1(t − cj ).) Letdj be a complex number semi-equal tocj for j = 1, . . . , k2.

α(t) is a MPH curve if and only ifc′(t) is the real or imaginary part of a new complexified pla
polynomial curveδ(t)= k̃

∏k1
i=1(t− ri)

∏k2
j=1(t−dj ), wherek̃ is a complex number such that‖k‖ = ‖k̃‖.

Throughout this paper, the complexified curveδ(t) represented in Theorem 5 is called the dual cu
of γ (t).

Example 6. Given two polynomialsa(t)= 1
3t

3− 3
2t

2+5t+1 andb(t)= t2− t+2, we will determine all
possible MPH curvesα(t)= (a(t), b(t), c(t)). By factorizing the complexified plane polynomial cur
γ (t)= a′(t)+ ib′(t) overC, we getγ (t)= (t − 1− i)(t − 2+ 3i). Sincek= 1, k̃= eiθ . By Theorem 5,
c′(t) must be the real part or imaginary part of the following polynomials:

eiθ (t − 1+ i)(t − 2+ 3i), eiθ (t − 1− i)(t − 2− 3i), eiθ (t − 1+ i)(t − 2− 3i).

Especially whenθ = 0, c′(t) is one oft2−3t−1,4t−5,−4t+5, t2−3t+5,−2t+1. Thus, all possible
choices ofα(t)= (a(t), b(t), c(t)) are determined by the choice ofc(t):

c(t)= 1
3t

3− 3
2t

2− t + c0, 2t2− 5t + c0, −2t2+ 5t + c0,

−t2+ t − c0, or 1
3t

3− 3
2t

2+ 5t + c0.

The next example shows how to determine MPH curves whose velocity function are memb
pre-assigned class[h(t)].

Example 7. Let h(t)= t4− 6t3+ 23t2− 34t + 26. By factorizingh(t) overC, we get

h(t)= (t − 1− i)(t − 1+ i)(t − 2− 3i)(t − 2+ 3i).

Thus the possible choices fora′(t) andb′(t) are
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a:
a′(t), b′(t) = t2− 3t + 5 , (2t − 1) , t2− 3t − 1 , (−4t + 5) ,((
t2− 3t − 1

)
, (4t − 5)

)
,

((
t2− 3t + 5

)
, (−2t + 1)

)
.

Since k = 1, let k̃ = cosθ + i sinθ for real numberθ . The corresponding choices forc′(t) are
cosθ(t2− 3t − 1)+ sinθ(4t − 5) and cosθ(t2− 3t + 5)+ sinθ(−2t + 1).

Theorem 5 means that the polynomial MPH curve inR
2,1 is completely characterized by the roo

of the hodograph of its spine curve. In the following subsections, computing the speed function
curvature of the envelope which a MPH curve generates, we consider how the spine curve and
curve whose hodograph has roots semi-equal to those of the spine curve work on the resulting e
of the MPH curve.

2.1. Envelope

First, consider a polynomial MPH curveγ (t) = (x(t), y(t), r(t)) ∈ R
2,1. Then the equation of th

resulting envelope of the family of circles centered at(x(t), y(t)) with radiusr(t), denoted byE±(t), is
given as follows:

E±(t)= α(t)− r(t)m±(t),

where

α(t)= (
x(t), y(t)

)
,

σ (t)=
√
x′(t)2+ y′(t)2− r ′(t)2,

m±(t)=
(
r ′(t)x′(t)± y′(t)σ (t)

x′(t)2+ y′(t)2
,
r ′(t)y′(t)∓ x′(t)σ (t)

x′(t)2+ y′(t)2

)
.

Using complexified curvesα(t)= x(t) + iy(t), α′(t) = x′(t)+ iy′(t) andv(t) = r ′(t)+ iσ (t), we can
rewrite the envelope as follows:

E±(t)= α(t)− r(t)ω±(t), (2.1)

where

ω+(t)= α′(t)v(t)
x′(t)2+ y′(t)2

, ω−(t)= α′(t)v(t)
x′(t)2+ y′(t)2

.

Remark 8. Sinceγ (t) is a MPH curve,α′ andv are of the same class (i.e.,‖α′‖ = ‖v‖). So, we have
that‖ω±(t)‖ = 1.

Next, we compute the speed function Sp(t) of the envelope curve with the help of the following lemm

Proposition 9.

(1) For a complexified plane curveα(t), the following two equations hold:(
α′

‖α′‖
)′
= καiα

′, κα =−κα.
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(2) For a complexified plane curveα(t), β(t) with ‖α′‖ = ‖β ′‖, the derivative ofω(t)= α

‖α′‖
β

‖β ′‖ is given
as follows.

ω′ = iω‖α′‖(κα + κβ)

whereκα andκβ are curvature ofα andβ, respectively.

Proof. (1) From the Frenet formula, we get(
α′

‖α′‖
)′
= T ′(t)= κα

(
ds

dt

)
N(t)= κα‖α′‖i α′

‖α′‖ = καiα
′.

Note that Im(‖α′‖2)= Im(α′α′)= 0 andκα = Im(α′α′′)
‖α′‖3 . Thus

κα = Im(α′α′′)
‖α′‖3 = Im(α′α′′)

‖α′‖3 =− Im(α′α′′)
‖α′‖3 =−κα.

(2) ω′ is computed as follows.

ω′ =
(

α′

‖α′‖
β ′

‖β ′‖
)′
=

(
α′

‖α′‖
)′(

β ′

‖β ′‖
)
+

(
α′

‖α′‖
)(

β ′

‖β ′‖
)′

= καiα
′
(

β ′

‖β ′‖
)
+ α′

‖α′‖κβiβ
′ = iα′β ′

‖α′‖ (κα + κβ)= iω‖α′‖(κα + κβ). ✷
Now, we compute Sp(t). Note thatE′±(t) = α′(t) − r ′(t)ω±(t) − r(t)ω′±(t). So, Sp(t)2 is given as

follows:

Sp(t)2=E′±(t)E′±(t)

= (
α′(t)− r ′(t)ω±(t)− r(t)ω′±(t)

)(
α′(t)− r ′(t)ω±(t)− r(t)ω′±(t)

)
= ∥∥α′(t)∥∥2+ (r ′)2‖ω±‖2+ r2‖ω′±‖2− r ′(α′ω± + α′ω±)

− r(α′ω′± + α′ω′±)+ rr ′(ω±ω′± +ω±ω′±).

By Remark 8, we getω±ω′± +ω±ω′± = 0. Henceforth

Sp(t)2= ∥∥α′(t)∥∥2+ (r ′)2+ r2‖ω′±‖2− 2r ′Re(α′ω±)− 2r Re(α′ω′±). (2.2)

Moreover, for

α′ω± = α′α′v(t)/
(
x′2+ y′2

)
(or α′α′v(t)/(x′2+ y′2))

= v(t) (or v(t) ),

we have

Re(α′ω±)= r ′. (2.3)

Let V (t)= ∫ t

0 v(s)ds. Then by Proposition 9,(ω±)′ are given as follows:

(ω+)′ = iω+‖α′‖(κα + κV )= iω+‖α′‖(κα − κV ),

(ω−)′ = iω−‖α′‖(κα + κV ).
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ction

velope
Thus we have

Re(α′ω′±)=Re
(
α′(−i)ω±‖α′‖(κα ∓ κV )

)
= Im(α′ω±)‖α′‖(κα ∓ κV )

=±σ‖α′‖(κα ∓ κV ). (2.4)

Plugging (2.3), (2.4) into (2.2), we get the following

Sp(t)2= ‖α′‖2+ r ′2+ r2‖ω±‖2‖α′‖2(κα ∓ κV )
2− 2r ′2− 2r

(±σ‖α′‖(κα ∓ κV )
)

= (‖α′‖2− r ′2
)∓ 2rσ‖α′‖(κα ∓ κV )+ r2‖α′‖2(κα ∓ κV )

2

= (
r‖α′‖(κα ∓ κV )∓ σ

)2
.

Remark 10. (1) If we apply the fact that the conjugation for complex curves is equivalent to the refle
for plane curves, then the second part of (1) in Proposition 9 is clear.

(2) Since‖α′‖κα = Im(α′α′′)
‖α′‖2 , the above equation implies that for a polynomial MPH curveγ (t) =

(x(t), y(t), r(t)), the derived envelopes are (plane) PH curves whose speeds are rational.

2.2. Curvature of envelope

In this subsection, we compute the curvature of the envelope. Let Sp(t), T (t),N(t) andκ(t) be the
speed function, the unit tangent vector field, the unit normal vector field and the curvature of en
curve, respectively. Since we are dealing with sweeping of circle, it is clear that

α(t)=E±(t)∓ r(t)N(t). (2.5)

Thus we getω±(t)=∓N(t) and

ω′±(t)=∓N ′(t)=±κ(t)Sp(t)T (t).

So,

κ =±ω
′±T
Sp
=± iω±‖α

′‖(κα ∓ κV )E
′±

Sp2 =± iω±‖α
′‖(κα ∓ κV )(α

′ − r ′ω± − rω′±)
Sp2 .

Using the followings:

(1) ω±α′ = α′vα′
x ′2+y ′2 (or α′vα′

x ′2+y ′2 )= v (or v)= r ′ ∓ iσ ,
(2) ω±ω± = 1,
(3) ω±ω′± = −i‖α′‖(κα ∓ κV ),

finally, for A± = ‖α′‖(κα ± κV ), we have

κ =±A∓(±σ + ir ′)− iA∓r ′ − rA2∓
Sp2 =∓ A∓

(rA∓ ∓ σ )
.
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3. Hermite interpolation

We want to find a regular PH quartic in a Minkowski spaceR
2,1 which satisfying the following a firs

order Hermite data:

α(0)= P0, α(1)= P1, (3.1)

α′(0)=D0, α′(1)=D1, (3.2)

wherePk = (xk, yk, rk) andDk = (dxk , d
y

k , ek). We will denotezk = xk + iyk anddk = dxk + id
y

k .
In fact, we are seeking four polynomialsx(t), y(t), r(t), σ (t) such that(x′(t))2+ (y′(t))2= (r ′(t))2+

(σ ′(t))2. Let α̃(t) = x(t) + iy(t) and β(t) = r(t) + iσ (t). We know that if α̃′(t) is factorized into
k(t − ω1)(t − ω2)(t − ω3), thenβ ′(t) is given bykeiθ (t − ω∗1)(t − ω∗2)(t − ω∗3) whereω∗j is a complex
number semi-equal toωj j = 1,2,3. From the Hermite data, we get the following constraints:

z1= k
(

1
4 − 1

3S1+ 1
2S2− S3

)
, (3.3)

d0=−kS3, (3.4)

d1= k(1− S1+ S2− S3), (3.5)

β1= eiθk
(

1
4 − 1

3S
∗
1 + 1

2S
∗
2 − S∗3

)
, (3.6)

d̃0=−eiθkS∗3, (3.7)

d̃1= eiθk
(
1− S∗1 + S∗2 − S∗3

)
, (3.8)

whered̃j = ej ± i
√
‖dj‖2− e2

j for j = 1,2 andSj andS∗j are thej th symmetric polynomials over{ωj }
and{ω∗j }, respectively.

Depending on the choices ofω∗j , we have 4 cases.

(I) ω∗j = ωj for all j = 1,2,3.
(II) ω∗1 = ω1 andω∗j = ωj for j = 2,3.

(III) ω∗j = ωj for j = 1,2 andω∗3 = ω3.
(IV) ω∗j = ωj for j = 1,2,3.

CaseI. In this case,S∗j = Sj for j = 1,2,3. From Eqs. (3.4), (3.5), (3.7), and (3.8), we get

d0

d̃0

= e−iθ = d1

d̃1

.

θ is computed from the above equation and the system becomes underdetermined. If

d0

d̃0

= d1

d̃1

, r1=Re
(
eiθz1

)
(3.9)

holds, then there exists infinitely many solutions fork,ωj . If not, then there exist no solutions. No
that if Eq. (3.9) holds, thenβ(t) = eiθ α̃(t), that is, the curveβ(t) is a rotated curve of̃α(t) which is a
projected curve ofα(t). It is a degenerate case. To solve this Hermite interpolation problem, it suffi
use a cubic curve. Strategy is very simple: First solve theC1 Hermite interpolation problem inR2 with
projected data using planar cubicα̃(t). Thenβ(t) is a rotated curve of̃α(t) by θ . Finally, taking the rea
part ofβ(t) gives the solution. If we need quartic curveα(t), degree elevation can be performed.
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n

CaseII. From Eqs. (3.4), (3.5), (3.7), and (3.8), we get

d0

d̃0

= e−iθ
ω1

ω1
,

d1

d̃1

= e−iθ
(1−ω1)

(1−ω1)
.

Dividing above two equations, we get

a1

a0
= λ

λ
,

whereaj = dj/d̃j for j = 1,2 andλ= 1−ω1
ω1

. Note thatλ is written as

λ= reiη, η= θ1− θ0

2
, (3.10)

whereθj = arg(aj ) for j = 1,2 (note thatr can have negative values).
Thus,

ω1= 1

1+ reiη
.

Once we findω1, it is quite easy to findω2 andω3.
From Eqs. (3.3)–(3.5), we get

ω1(ω2ω3)z1=−d0
(

1
4 − 1

3(ω1+ω2+ ω3)+ 1
2

(
ω1(ω2+ω3)+ ω2ω3

)− ω1(ω2ω3)
)
,

ω1(ω2ω3)d1=−d0
(
1− (ω1+ω2+ ω3)+ω1(ω2+ ω3)+ω2ω3− ω1(ω2ω3)

)
.

LetT1 andT2 be the symmetric polynomials overω2 andω3. Then we get the following linear equatio
for T1, T2:(

ω1z1+ d0(
1
2 −ω1) d0(−1

3 + 1
2ω1)

ω1d1+ d0(1−ω1) −d0(1− ω1)

)(
T2

T1

)
=

(
d0(−1

4 + 1
3ω1)

−d0(1−ω1)

)
.

Finally, k is given byk=− d0
ω1T2

. Plugging theses quantities into (3.6), we get

r1=Re(β1)=Re
(
eiθk

(
1
4 − 1

3S
∗
1 + 1

2S
∗
2 − S∗3

))

=Re

(
− d̃0

ω1T2

(
1
4 − 1

3(ω1+ T1)+ 1
2(ω1T1+ T2)− ω1T2

))
. (3.11)

Thus the only known in the above equation isr . After tedious algebraic manipulation using‖d̃j‖2 =
‖dj‖2, we get the following quadratic equation inr :

c2r
2+ c1r + c0= 0, (3.12)

wherec0, c1, c2 are given as follows:

2c0=−6r1+Re
(
a−1

0

(
6z1+ d1e

−2iη − d1
))
,

2c1= 12r1 cos(η)+Re
(
a−1

0

(
d1e
−iη − 12z1e−iη − d1e−3iη

))+ 2 Im(d̃0)sin(η),

2c2=−6r1+Re
(
a−1

0

(
d0− d0e

−2iη + 6z1e−2iη)).
See Appendix A for derivation.
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se
CaseIII. Note that Re(β(t))=Re(β(t)). Hence

r1=Re
(
β(1)

)=Re
(
β(1)

)
,

e0=Re(d̃0)=Re
(
β ′(0)

)=Re
(
β ′(0)

)
,

e1=Re(d̃1)=Re
(
β ′(1)

)=Re
(
β ′(1)

)
,

and

Re
(
keiθ (t −ω1)(t − ω2)(t − ω3)

)=Re
(
ke−iθ (t −ω1)(t − ω2)(t − ω3)

)
=Re

(
keiθ

∗
(t −ω1)(t − ω2)(t − ω3)

)
,

whereθ∗ = −2θk− θ andθk = arg(k). From the definition of̃dj = ej ±
√
‖dj‖2− e2

j , we have four case

for d̃0, d̃1. Thus if we solve case II for all possible four cases, then we can cover case III.
CaseIV. It is similar to case III. By solving case I, we can also solve case IV.

Remark 11. As in the case I, if the following conditions are hold, then there are no MPH curve to
C1 Hermite interpolation problem.

d0

d̃0

= d̃1

d1
, r1 �=Re

(
d0

d̃0

z1

)
.

Collecting the above results, we get the following algorithm forC1 Hermite interpolation using MPH
quartic curve.

Algorithm (C1 Hermite interpolation using MPH quartic)
Input: P0,P1,D0,D1 ∈R

2,1

Output: MPH quartic
(∗ D0,D1 must be space-like vectors∗)
1. Computez0, z1,d0,d1, d̃0, d̃1.
2. (∗We have four cases according to the sign of imaginary parts ofd̃0, d̃1. ∗)
3. z1← z1− z0

4. for each 4 cases
5. do a0← d0

d̃0
, a1← d1

d̃1

6. if a0= a1

7. then if r1=Re(z1/a0)

8. then solve the plane cubic Hermite interpolation problem
9. else return “There are no solution.”

10. else solve case II

Although we tookη as θ1−θ0
2 in Eq. (3.10), θ1−θ0

2 + π is also possible. Thus if a solutionr for

Eq. (3.12) is negative, then we must interpret it by−rei( θ1−θ02 +π) as in the polar coordinate in plan
By the AlgorithmC1 Hermite interpolation using MPH quartic, we get 8 MPH quartics in generic ca
(see Fig. 1).
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. (3.12)

rlying

n
n

e

Fig. 1. 8 MPH quartics solvingC1 Hermite interpolation problem of an Hermite dataP0 = (0,0,0),
D0 = (0.9934,0.07224,0.8761); P1 = (0.6098,0.4777,0.0.6977), D1 = (0.0659,0.2298,0.0780). Dotted lines are
given tangent vectors and solid curves are interpolating MPH quartics.

Remark 12. To guarantee the existence of solution, we need the discriminant of the quadratic Eq
to be nonnegative:

c2
1− 4c0c2 � 0. (3.13)

We say anC1 Hermite dataP0,P1,D0,D1 an admissible configurationfor (direct) C1 Hermite
interpolation using MPH quartic if the above discriminant is nonnegative. See Appendix B for unde
geometry.

To get a solution forC1 Hermite interpolation problem, we suggesta subdivision scheme: If there exist
no real solution forr , then add a pointP1/2 and tangent vectorD1/2 at t = 1/2 and solve twoC1 Hermite
interpolation problems:

α1(t): α1(0)= P0, α1(1)= P1/2, α′1(0)=D0, α′1(1)=D1/2,

α2(t): α2(0)= P1/2, α2(1)= P1, α′2(0)=D1/2, α′2(1)=D1.

We takeP1/2 andD1/2 as the midpoint ofP0,P1 andD0,D1, respectively. Note that the subdivisio
must be done recursively and adaptively. If there exists a solution forr , hence a MPH quartic, the
subdivision is useless.

3.1. Numerical results

Data are generated by random number generator fixingP0 = (0,0,0). Only space-like vectors ar
chosen as tangent vectorsD0,D1. First example data are as follows:

P0= (0,0,0), D0= (0.9934,0.07224,0.8761),
P1= (0.6098,0.4777,0.6977), D1= (0.0659,0.2298,0.0780).
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Fig. 2. A result of subdivision scheme. We divide once. Light curve is first segment and dark curve is second segme
figure is the same curves in a different view point. Dotted lines are tangent vectors.

Fig. 1 shows eight quartics obtained by AlgorithmC1 Hermite interpolation using MPH quartic.
Dotted lines are tangent vectors and solid curves are interpolating quartic curves. Second dat
follows:

P0= (0,0,0), D0= (0.8299,0.3331,0.6852),
P1= (0.5425,0.0361,0.5588), D1= (0.3227,0.3431,0.4265).

In this case,D = c2
1 − 4c0c2 is negative. Hence we subdivide once to getP1/2 = 1

2(P0 + P1) and
D1/2= 1

2(D0+D1). Discriminants for these two small problems are positive and we get solutions.
shows the result. Light curve is the first segment interpolatingP0,D0,P1/2,D1/2 and dark curve is the
second segment interpolatingP1/2,D1/2,P1,D1. Right figure is the same curve with a different vie
point. Dotted lines in right figure are tangent vectors.

4. C1/2 interpolation

Note thatG1 interpolation using MPH cubic is completely solved (Choi et al., 1999). Howe
C1 Hermite interpolation using MPH quartic is not always possible and there exists an adm
configuration of Hermite data presented in Appendix B. Now we will introduce a new conceptC1/2

interpolation. ByC1/2 interpolation, we mean that given dataP0,P1,D0,D1, to find a curveα(t) such that

α(0)= P0, α′(0)=D0,

α(1)= P1, α′(1)= εD1
(4.1)

for some nonzero real numberε. That is an intermediate version ofG1 andC1 interpolation.
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From the Hermite data, we get the following constraints:

z1= k
(

1
4 − 1

3S1+ 1
2S2− S3

)
, (4.2)

d0=−kS3, (4.3)

εd1= k(1− S1+ S2− S3), (4.4)

β1= eiθk
(

1
4 − 1

3S
∗
1 + 1

2S
∗
2 − S∗3

)
, (4.5)

d̃0=−eiθkS∗3, (4.6)

εd̃1= eiθk(1− S∗1 + S∗2 − S∗3), (4.7)

whered̃j = ej ± i
√
‖dj‖2− e2

j for j = 1,2 andSj andS∗j are thej th symmetric polynomials over{ωj }
and{ω∗j }, respectively.

Note that it suffice to modify case II in the (direct)C1 Hermite interpolation presented in Section
From Eqs. (4.3), (4.4), (4.6), and (4.7), we get

d0

d̃0

= e−iθ
ω1

ω1
,

d1

d̃1

= e−iθ
(1− ω1)

(1− ω1)
.

Dividing above two equations, we get

a1

a0
= λ

λ
,

whereaj = dj/d̃j for j = 1,2 andλ= 1−ω1
ω1

. Note thatλ is written as

λ= reiη, η= θ1− θ0

2
,

whereθj = arg(aj ) for j = 1,2. Thus,

ω1= 1

1+ reiη
.

Note thatω1 runs on the perimeter of a circle which passes 0 and 1 and this circle is comp
determined bya0,a1 sincer is the only variable inω1.

Once we findω1, it is quite easy to findω2 andω3. From Eqs. (4.2)–(4.4), we get

ω1(ω2ω3)z1=−d0
(

1
4 − 1

3(ω1+ω2+ ω3)+ 1
2

(
ω1(ω2+ω3)+ ω2ω3

)− ω1(ω2ω3)
)
,

εω1(ω2ω3)d1=−d0
(
1− (ω1+ ω2+ω3)+ ω1(ω2+ ω3)+ ω2ω3− ω1(ω2ω3)

)
.

Let T1 andT2 be the symmetric polynomials overω2 andω3. Then we get the following linear equatio
for T1, T2:(

ω1z1+ d0(
1
2 −ω1) d0(−1

3 + 1
2ω1)

εω1d1+ d0(1−ω1) −d0(1− ω1)

)(
T2

T1

)
=

(
d0(−1

4 + 1
3ω1)

−d0(1−ω1)

)
.

The determinant of the above matrix is given as follows:

Det(r)=−1
6d0(1−ω1)(1− 3ω1)− z1ω1(1−ω1)+ 1

6εd1ω1(2− 3ω1). (4.8)
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Under an assumption Det(r1) �= 0, we can findT1, T2 as follows:

T2=−1

2

d0(1− 3ω1+ 2ω2
1)

ε d1(2ω1− 3ω2
1)− d0(1− 4ω1+ 3ω2

1)− 6z1(ω1−ω2
1)
,

T1=−1

2

ε d1(3ω1− 4ω2
1)− 12z1(ω1−ω2

1)− d0(3− 11ω1+ 8ω2
1)

εd1(2ω1− 3ω2
1)− d0(1− 4ω1+ 3ω2

1)− 6z1(ω1− ω2
1)

.

k is given byk=− d0
ω1T2

. Plugging theses quantities into (4.5), we get

β1= eiθk
(

1
4 − 1

3S
∗
1 + 1

2S
∗
2 − S∗3

)

=− d̃0

ω1T2

(
1
4 − 1

3(ω1+ T1)+ 1
2(ω1T1+ T2)− ω1T2

)

= N(ω1, ε)

D(ω1)
,

where

N(ω1, ε)= εd1d̃0ω1(ω1−ω1)+ d̃0
(
6z1ω1(1− 2ω1− ω1+ 2ω1ω1)

+ d0
(
ω1− ω1+ ω2

1− ω1ω1
))

(4.9)

D(ω1)= 6ω1d0
(
1− 3ω1+ 2ω2

1

)= 6ω1d0(1−ω1)(1− 2ω1). (4.10)

To satisfy theC1/2 interpolation condition, we must findε such thatr1 = Re(β1). β1 is given as
follows:

β1= N(ω1, ε)

D(ω1)
=Aε+B,

where

A= d1d̃0ω1(ω1− ω1)

D(ω1)
, (4.11)

B = N(ω1, ε)− εd1d̃0ω1(ω1− ω1)

D(ω1)
. (4.12)

(Note that the numerator ofB does not have anyε term.) Thus

r1=Re(β1)=Re(A)ε+Re(B). (4.13)

By choosingr such that Re(A) �= 0, Re(B) �= r1 and Det(r) �= 0, ε is determined.

Remark 13. There are at most five singular solutions forr and henceforth forω1 (see Appendix C)
Hence for allr except only at most five singular solutions, we can achieveC1/2 interpolation.

5. Two step C1 interpolation using MPH quartic

As we know, one stepC1 Hermite interpolation using MPH quartic is not possible in general. In
section, we present a two stepC1 Hermite interpolation scheme. Letz1, r1, d0, d1, d̃0 andd̃1 beC1 data
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with an assumption that the initial position is the origin. Choose an appropriate position(z∗, r∗) between
the origin and(z1, r1) and an appropriate velocityd∗. (d̃∗ is determined automatically from these dat
As you will see in the following argument, the choices forz∗, r∗ andd∗ are almost free. For example, w
can set

r∗ = r1

2
, z∗ = z1

2
, d∗ = d0+ d1

2
.

Now, consider twoC1/2 interpolations—aC1/2 interpolation from the origin to the new mid point an
a C1/2 interpolation from the terminal point of the initial data to the new mid point. According to
previous argument in Section 4, we can findC1/2 interpolants for each case. The key point is how
makeε in two interpolation problem coincide.

To complete this, first consider Eq. (4.13) again. Assume thatε is given. Then the only variable o
Eq. (4.13) isr .

Usingλ= reηi ,ω1= 1
reηi+1, from (4.10) and (4.11), we get

A= m

3

z∗1
reηi − 1

i = m

3

z∗1(re
−ηi − 1)

(reηi − 1)(re−ηi − 1)
i, (5.1)

wherez∗1= d1d̃0e−ηi
d0

andm= sin(η). From (4.9), (4.10) and (4.12), we have

B = 6z∗2(re
−ηi − 1)+ r(−e−ηi + eηi)

6(reηi − 1)
, (5.2)

where z∗2 = d̃0z1
d0

(for details, see Appendix C). Using (5.1) and (5.2), we get a quadratic equ
equivalent to (4.13) as follows:

E2r
2+E1(ε)r +E0(ε)= 0, (5.3)

where

E1=M1+M2ε, E0=M3+M4ε

for some constantsM1,M2,M3,M4 computed from given data andE2 is also a constant withou
parameterε. Assume thatE2,M2 �= 0. Then the discriminantE2

1−4E2E0 of (5.3) is a quadratic equatio
in ε and the coefficient ofε2 is positive. Therefore forε sufficiently large,E2

1 − 4E2E0 � 0, i.e., (5.3)
has roots.

Remark 14. Since Eq. (5.3) has roots if its discriminantE2
1 − 4E2E0 � 0 (whenE2 �= 0), even thoughε

is not sufficiently large, there are possibilities that (5.3) has roots. For example, forε satisfyingE2E0 < 0,
(5.3) has roots.

Next, consider aC1/2 interpolation from the origin to the new mid point. For given d
z∗, r∗,d0, d̃0,d∗, d̃∗, we solve the following equation:

r∗ =Re
(
A1(ω

∗
1)

)
ε+Re

(
B1(ω

∗
1)

)
. (5.4)

For second interpolant, we solve the following equation from the dataz∗ − z1, r∗ − r1,−d1,−d̃1,−d∗,
−d̃∗:

r∗ − r1=Re
(
A2(ω

∗∗
1 )

)
ε+Re

(
B2(ω

∗∗
1 )

)
. (5.5)
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Note that for each of (5.4) and (5.5), if we assume that all data are given exceptd∗, then only finited∗s
satisfyE2 = 0 or M2 = 0. By the previous argument and Remark 14, ford∗ except these solutions, w
can get twoC1/2 interpolants with same scaling factorε. That is, we get anC1 interpolant from the origin
to the new mid point(z∗, r∗) with the velocity datad0, d̃0, εd∗, εd̃∗ and anotherC1 interpolant from the
new mid point(z∗, r∗) to the initial end point(z1, r1) with the velocity dataεd∗, εd̃∗,d1, d̃1, respectively.

Remark 15. There may exist at most 10 singular choices forr − 5 from each dividedC1/2 interpolation.
However, these 10 singular cases can be predetermined by the input data.

Algorithm (Two stepC1 Hermite interpolation using MPH quartic)
Input: P0,P1,D0,D1 ∈R

2,1

Output: MPH quartic
(∗ D0,D1 must be space-like vectors∗)
1. Computez0, z1,d0,d1, d̃0, d̃1.
2. (∗We have four cases according to the sign of imaginary parts ofd̃0, d̃1. ∗)
3. z1← z1− z0

4. for each 4 cases
5. do a0← d0

d̃0
, a1← d1

d̃1

6. if a0= a1

7. then if r1=Re(z1/a0)

8. then solve the plane cubic Hermite interpolation problem
9. else qreturn “There are no solution.”

10. else if admissible configuration
11. then solve case II in (one step)C1 interpolation
12. else make a mid point and solve twoC1/2 interpolation.

Note that for the (adaptive) subdivision scheme, 12 in the above algorithm 15 should be chang
“make a mid point and solve twoC1 interpolation problem”.

5.1. Numerical results

We apply our two stepC1 Hermite interpolation scheme to a data:

P0= (9.43474,19.1296,0.259429), P1= (19.3208,21.4930,0.375256),
D0= (10.0124,19.2597,0.570228), D1= (12.6065,14.4561,0.024123).

Fig. 3 shows the resulting interpolant. Dotted lines are scaled tangent vectors, light curve is t
segment and bold curve is the second segment. Also the left figure in Fig. 4 shows the radius (t versus
r) and spine (x versusy) plot. The right-hand side figure in Fig. 4 shows the envelope when we inte
the interpolant as a curve representation of one parameter family of circles.

See Figs. 5 and 6 for the second data set:

P0= (12.8242,5.87048,0.164317), P1= (20.2475,6.26066,0.735760),
D0= (4.19536,17.9409,0.046602), D1= (12.1594,10.6271,0.021634).
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Fig. 3. A MPH quarticC1 Hermite interpolant. Dotted lines are given tangent vectors, solid light curve is the first segme
solid bold curve is the second segment.

Fig. 4. Left: Radius and spine plot. Right: Resulting envelope.

Fig. 5. A MPH quarticC1 Hermite interpolant. Dotted lines are given tangent vectors, solid light curve is the first segme
solid bold curve is are the second segment.
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Fig. 6. Left: Radius and spine plot. Right: Resulting envelope plot.

Remark 16. From the fact that the success of two stepC1 interpolation is guaranteed with probability
we can infer that the (adapted) subdivision scheme is a modified version of the two step method.

6. Concluding remark and further studies

We characterized MPH curves inR2,1: All MPH curves are determined by the roots of hodogra
of their complexified spine curves and some conjugates of roots. In other words, for a MPH
α(t) = (x(t), y(t), r(t)), we proved that a curveα(t) is MPH if and only if the complexified curv
r ′(t)+ σ (t)i whereσ (t) satisfiesx′(t)2+ y′(t)2= r ′(t)2+ σ (t)2 is obtained by rotating the curve who
zeros are semi-equal to those ofx′(t)+ y′(t)i and the envelope generated by the MPHα(t) is a rational
PH curve.C1 Hermite interpolation problem with MPH quartic curve was also dealt. To overc
the difficulty in guaranteeing the existence of solutions, we introducedC1/2 Hermite interpolation and
showed that two stepC1 Hermite interpolation is possible.

As further studies, we introduce two research directions regarding the choices. First is the cho
intermediate data. In two step interpolation scheme, as we pointed out at the beginning of Se
the choices for intermediate point and its speed data are almost free. As it is well known that poly
curves of high degree contain wiggles, bad choice ford∗ is apt to lead wiggles in the resulting interpola
For this issue, we need more insight on the shape of polynomial curves and variety of numerical d
varying intermediate data. Second is the choice forr∗. To get the best choice forr∗, we need some criteri
on the quality of the resulting interpolant. Minimization of curvature variation of interpolant may b
answer for this best choice problem. Currently, we are tackling this problem in this direction.

Appendix A. Coefficients of a quadratic equation

After plugging all data into Eq. (3.11), we get the following quadratic equation inr :

c0+ c1r + c2r
2= 0,

where the coefficientscj are given as follows:
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2) to be
2c0=−(d̃0xd0xd1x)− d̃0yd0yd1x + d̃0yd0xd1y − d̃0xd0yd1y

− 6d2
0xr1− 6d2

0yr1+ 6d̃0xd0xz1x + 6d̃0yd0yz1x − 6d̃0yd0xz1y + 6d̃0xd0yz1y

+ d̃0xd0xd1x cos(2η)+ d̃0yd0yd1x cos(2η)− d̃0yd0xd1y cos(2η)+ d̃0xd0yd1y cos(2η)

+ d̃0yd0xd1x sin(2η)− d̃0xd0yd1x sin(2η)+ d̃0xd0xd1y sin(2η)+ d̃0yd0yd1y sin(2η),

2c1= d̃0xd0xd1x cos(η)+ d̃0yd0yd1x cos(η)− d̃0yd0xd1y cos(η)+ d̃0xd0yd1y cos(η)

+ 12d2
0xr1 cos(η)+ 12d2

0yr1 cos(η)− 12d̃0xd0xz1x cos(η)− 12d̃0yd0yz1x cos(η)

+ 12d̃0yd0xz1y cos(η)− 12d̃0xd0yz1y cos(η)− d̃0xd0xd1x cos(3η)− d̃0yd0yd1x cos(3η)

+ d̃0yd0xd1y cos(3η)− d̃0xd0yd1y cos(3η)+ 2d̃0yd
2
0x sin(η)+ 2d̃0yd

2
0y sin(η)

+ d̃0yd0xd1x sin(η)− d̃0xd0yd1x sin(η)+ d̃0xd0xd1y sin(η)+ d̃0yd0yd1y sin(η)

− 12d̃0yd0xz1x sin(η)+ 12d̃0xd0yz1x sin(η)− 12d̃0xd0xz1y sin(η)− 12d̃0yd0yz1y sin(η)

− d̃0yd0xd1x sin(3η)+ d̃0xd0yd1x sin(3η)− d̃0xd0xd1y sin(3η)− d̃0yd0yd1y sin(3η),

2c2= d̃0xd
2
0x + d̃0xd

2
0y − 6d2

0xr1− 6d2
0yr1− d̃0xd

2
0x cos(2η)− d̃0xd

2
0y cos(2η)

+ 6d̃0xd0xz1x cos(2η)+ 6d̃0yd0yz1x cos(2η)− 6d̃0yd0xz1y cos(2η)

+ 6d̃0xd0yz1y cos(2η)− d̃0yd
2
0x sin(2η)− d̃0yd

2
0y sin(2η)+ 6d̃0yd0xz1x sin(2η)

− 6d̃0xd0yz1x sin(2η)+ 6d̃0xd0xz1y sin(2η)+ 6d̃0yd0yz1y sin(2η),

whered0= d0x+ id0y , d1= d1x+ id1y , d̃0= d̃0x+ id̃0y , d̃1= d̃1x+ id̃1y andz1= z1x+ iz1y . To compute
the above coefficients, we use Mathematica. After some manipulations, we get compact form:

2c0=−6‖d0‖2r1+ 6Re(d0d̃0z1)+Re(d0d̃0d1)
(
cos(2η)− 1

)+ Im(d0d̃0d1)sin(2η),

2c1=Re(d0d̃0d1)cos(η)+ 12‖d0‖2r1 cos(η)− 12Re(d0d̃0z1)cos(η)−Re(d0d̃0d1)cos(3η)

+ 2 Im(d̃0)‖d0‖2 sin(η)+ Im(d0d̃0d1)sin(η)− 12 Im(d0d̃0z1)sin(η)− Im(d0d̃0d1)sin(3η),

2c2=Re(d0)‖d0‖2− 6‖d0‖2r1−Re(d̃0)‖d0‖2 cos(2η)+ 6Re(d0d̃0z1)cos(2η)

− Im(d̃0)‖d0‖2 sin(2η)+ 6 Im(d0d̃0z1)sin(2η),

equivalently,

2c0=−6r1+Re
(
a−1

0

(
6z1+ d1e

−2iη − d1
))
,

2c1= 12r1 cos(η)+Re
(
a−1

0

(
d1e
−iη − 12z1e−iη − d1e−3iη

))+ 2 Im(d̃0)sin(η),

2c2=−6r1+Re
(
a−1

0

(
d0− d0e

−2iη + 6z1e−2iη)).

Appendix B. Existence of solution

To guarantee the existence of solution, we need the discriminant of the quadratic equation (3.1
nonnegative:

c2
1− 4c0c2 � 0. (B.1)
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fold
Introduce new symbolsα,β, γ such that

c0=−3(r1− α), c2=−3(r1− β), c1= 6(r1 cosη+ γ ).

Then

D/4= 9

{
−sin2ηr2

1 + 2

(
γ cosη− α + β

2

)
r1+ γ 2− αβ

}
.

Let r+1 andr−1 be roots ofD/4= 0. Then the possible range ofr1 is a closed interval[r−1
1 , r+1 ] if other

data are fixed. The whole set of dataP1,D0,D1 guaranteeing the existence of solution forms a mani
of dimension 9 inR3× S × S , whereS is the set of space-like vectors inR2,1.

The coefficientsc0, c1, c2 are rewritten as follows:

2c0=−6r1+
(

6Re

(
z1

a0

)
−Re

(
d1

a0
− d1

a1

))
,

2c2=−6r1+
(

6Re

(
z1

a1

)
−Re

(
d0

a0
− d0

a1

))
,

2c1= 12cosηr1−
(

12Re

(
z1

a0
e−iη

)
−Re

((
d1

a0
− d1

a0

)
e−iη

)
+ Im

(
d0

a0

)
sinη

)
.

Let

λ0=−6r1+ 6
z1

a0
−

(
d1

a0
− d1

a1

)
,

λ2=−6r1+ 6
z1

a1
−

(
d0

a0
− d0

a1

)
.

Then 2c0=Re(λ0) and 2c2=Re(λ2). Consider a complex number1
2(λ0e−iη + λ2eiη).

−Re

(
1

2

(
λ0e
−iη + λ2eiη

))=−6r1 cosη− 6Re

(
z1

a0
e−iη

)
+ 1

2
Re

((
d1

a0
− d1

a1

)
e−iη

)

− 1

2
Re

((
d0

a0
− d0

a1

)
eiη

)
.

And,

−1

2
Re

((
d0

a0
− d0

a1

)
eiη

)
=−1

2
Re

(
d0

(
a1− a0

a0a1

)
eiη

)
=−1

2
Re

(
d0

a0

e2iη − 1

eiη

)

=−1

2
Re

(
d0

a0
2sinηi

)
= Im

(
d0

a0

)
sinη.

Therefore, we get the following relations:

2c0=Re(λ0),

2c1=Re
(
λ0e
−iη + λ2eiη

)
,

2c2=Re(λ2).

In other words,
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)

eet at
2c0= λr0,

2c1= λr0 cosη+ λi0 sinη+ λr2 cosη− λi2 sinη,

2c2= λr2.

Assume that all data exceptr1 are fixed. Then

c2= c0+N, (B.2)

whereN = 1
2 Re(λ0− λ2)= 1

2 Re((6z1− d0+ d1)(
1
a1
− 1

a0
)) is independent ofr1. LetM = 1

2(λ
i
0− λi2).

Note thatM is independent ofr1. Thenc1= (c0+ c2)cosη+M sinη. Consider

f (c0, c2)= c2
1− 4c0c2

= cos2η
(
c2

0+ c2
2

)+ 2
(
cos2η− 2

)
c0c2+ 2cosη(c0+ c2)M sinη+M2 sin2η

� 0. (B.3)

Thus we know that there exists a solution if and only if(c0, c2) lies on the intersection of the line (B.2
and the region (B.3). To view the geometry more easily, we rotate the line and the conic by−45◦. That
is, (

c0

c2

)
=

(
cos 45◦ −sin45◦
sin 45◦ cos 45◦

)(
u1

u2

)
.

Thus the line and the conic are transformed into

u2= 1√
2
N,

f (u1, u2)= cos2η
(
u2

1+ u2
2

)+ (
cos2η− 2

)(
u2

1− u2
2

)+ 2
√

2cosη sinηMu1+ sin2ηM2

=−2sin2ηu2
1+ 2u2

2+ 2
√

2cosη sinηMu1+ sin2ηM2

=−2sin2η(u1−K)2+ 2u2
2+M2

� 0,

whereK = cosη√
2sinη

M . Fig. B.1 shows the hyperbola and the line. The line and the hyperbola m
u1 = α,β. The line segment contained in the dashed region is the feasible region. Note that(0,0) is
always contained in the regionf (u1, u2)� 0. Thus,α < 0< β. If u∗1= 1

2
√

2
(−12r1+ 6( z1

a0
+ z1

a1
)− (d1

a0
−

d1
a1
)− (d0

a0
− d0

a1
)) lies betweenα andβ, then the solution exists.

Appendix C. All possible singular cases

C.1. Re(A)= 0

Let us consider the condition Re(A) �= 0 which is a necessary condition for (4.13) have a solutionε.

A= d1d̃0ω1(ω1− ω1)

D(ω1)
= d1d̃0ω1(ω1− ω1)

6d0ω1(1−ω1)(1− 2ω1)
.
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se
Fig. B.1. Hyperbola and line.

Usingλ= reηi ,ω1= 1
reηi+1

, A is rewritten as follows:

A=
(

d1d̃0

6d0

)(
ω1

1− ω1

)(
ω1− ω1

ω1(1− 2ω1)

)
= 1

6r

(
d1d̃0e−ηi

d0

)(
reηi − re−ηi

reηi − 1

)
.

Let z∗1= d1d̃0e−ηi
d0

andm= sin(η). Then

A= m

3

z∗1
reηi − 1

i = m

3

z∗1(re
−ηi − 1)

(reηi − 1)(re−ηi − 1)
i.

Thus Re(A) = 0 is equivalent to Im(z∗1(re
−ηi − 1)) = 0. Let b1 = Im(z∗1e−ηi) and b2 = Im(z∗1). Then

Re(A)= 0 if and only if r = b2/b1. Thus we can chooser freely exceptr = b2/b1.

C.2. Re(B)= r1

First consider Re(B) = r1. Then we getε = 0 and it implies that
√
x′(t)2+ y′(t)2|t=1 = 0,√

z′(t)2+ σ (t)2|t=1= 0. It contradicts to the regularity of MPH curve. Thus we must identify this ca

r1+ Im(B)i = B = N(ω1, ε)− εd1d̃0ω1(ω1−ω1)

D(ω1)

= 6d̃0z1ω1(1− 2ω1)+ d0(ω1− ω1)

6d0ω1(1− 2ω1)

= z∗2
(1/ω1− 2)

(1/ω1− 2)
+ (−1/ω1+ 1/ω1)

6(1/ω1− 2)

= z∗2
re−ηi − 1

reηi − 1
+ −re

−ηi + reηi

6(reηi − 1)

= 6z∗2(re
−ηi − 1)+ r(−e−ηi + eηi)

6(reηi − 1)
,
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wherez∗2= d0z1
d0

. Thus taking the real part of the both part,

6r1
(
reηi − 1

)(
re−ηi − 1

)=Re
(
6z∗2

(
re−ηi − 1

)2+ r
(
e−ηi − eηi

)(
re−ηi − 1

))
,

equivalently,(
Re

(
6z∗2e−2ηi + e−2ηi − 1

)− 6r1
)
r2

− (
Re

(
12z∗2e−ηi

)+Re
(
e−ηi − eηi

)− 6r1
(
eηi + e−ηi

))
r + (

6Re(z∗2)− 6r1
)= 0.

That is,

(a1− 6r1)r
2− (a2− 6a3r1)r + 6(a4− r1)= 0.

Thus we have at most two singular solutions. Moreover, the coefficient of the above quadratic e
is predetermined by input data.

C.3. Det= 0

Second, what if Det= 0? From (4.8), a real numberε is given as follows:

ε= d0

d1

(1/ω1− 1)(1/ω1− 3)− 6z1/d0(1/ω1− 1)

2/ω1− 3
= z∗4re

ηi eηi − z∗3
2eηi − 1

,

wherez∗3= 2− 6z1/d0 andz∗4= d0/d1. Sinceε is a real number, Im(ε)= 0:

0= Im
(
r
(
z∗4eηi

)(
reηi − z∗3

)(
2re−ηi − 1

))
= r

(
Im

(
2z∗4eηi

)
r2− Im

(
z∗4

(
2z∗3+ e2ηi

))
r + Im

(
z∗4z
∗
3eηi

))
= r

(
d1r

2− d2r + d3
)
.

If r = 0, thenω1 is a real number and this also contradicts to initial assumption. Thus the sin
solutions come from the quadratic equationd1r

2− d2r + d3= 0.
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