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Abstract

In this paper, we study thé! Hermite interpolation problem using Minkowski Pythagorean Hodograph (MPH)
quartics inR%1. As a preliminary step, we characterize MPH curveR# by the roots of the hodographs of their
complexified spine curves. We present two schemes for this interpolation problem: one is a subdivision scheme
using directC! interpolation and the other is a two step scheme using a new coxtépinterpolation.
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1. Introduction

Pythagorean hodograph curves introduced by Farouki (Farouki and Sakkalis, 1990) have their roots
in the rational parameterization of curves and surfaces in the practical field of computer aided geometric
design. After Farouki’s introduction of Pythagorean Hodograph Curves, there has been vast researches
on this class of curves by himself and others (Farouki, 1992, 1994, 1996, 1997; Farouki et al., 1998;
Walton and Meek, 1996) and some related ones on a special class of curves called Minkowski
Pythagorean hodograph curves (MPH curves) (Moon, 1999; Choi et al., 1999, 2002; Choi and Lee,
2000).

MPH curves introduced by Moon (1999) also have their roots in the rational parametrization of curves
and surfaces. For example, as Hilgarter et al. (1999) pointed out, the offset with varying distance function
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r(¢) given by the spine curve:(¢) in R? admits a rational parameterization oRiin accordance with
m(t) if and only if (m(¢), r(¢)) is a MPH curve inR>*. Of course, if the radius functior(¢) is constant,
then the offset reduced to the classical offset and MPH condition reduce to PH condition. For canal
surface which is the envelope of one parameter family of moving spheres, we know that the canal surface
given by the spine curve: and the radius function admits a rational parameterization over the reals in
accordance with the spine curwe if and only if (m, r) is a space-like curve (Hilgarter et al., 1999;
Peternell and Pottmann, 1997) which is a natural model of the one parameter family of spheres
of varying radius inR”" that its spine curve i and its radius function is(z) in the Minkowski
spaceR™!. However, the rational parametrization of canal surfaces given by a space-like(eumpe
requires the factorization procedure in the rational parametrization algorithm (Hilgarter et al., 1999;
Peternell and Pottmann, 1997) spending the computational cost. On the other hand, if we restrict the
spine curve of canal surface to the MPH curve, then factorization procedure is not required.

The medial axis transform, in symbdWAT (%), closely related to swept volume of spheres is defined
to be the set of pairs consisting of centers and radii of the spheres, in other words the image of the
cyclographical mapping of spheres, maximally inscribed in the domain. MPH curves are also used to
compute the medial axis transform of a domain (Choi et al., 1999). Consider an one parameter family
C={B@m(t),r(t)) |t € I} of spheres of radius function(z) with spine curven(t). The swept volume
of C, in symbolsSV(C), is determined by the envelope of sphelig¢sB(m (1), r(r)) | t € I}. If the curve
(m, r) embedded in the Minkowski spa@&-! is a MPH curve, the boundary of the swept volume can
be rationally parametrized more efficiently as stated in offset cases. Especiffyt jfior 2 = SV(C)
we have the following results which explain the interesting relation between the swept volume and the
medial axis transform;

MAT(£2) #C,
SV(MAT(SV(C))) = SV(C),
where
MAT(£2) = {(m, r) | dist(p, m) = r = dist(q, m), for somep,q € 32 s.t.p #q}

if (m,r)is a MPH curve.

In this paper, we focus on MPH curves in the Minkowski sp&éé. In the first part of this paper,
we characterize MPH curves by the roots of the hodographs of them using the complex representation
of plane curves introduced by Farouki (1994). By this characterization, we find regular MPH curves can
have even degree even though regular PH curves admit only odd degree. This means that for Hermite
interpolation, in case of MPH curves, the required degree for MPH curve is less than that of PH curve.
For example, forC? interpolation, we do not need MPH quintic curves as expected in the PH context.
MPH quartic curvesare enough. In the second part of this paper, we solvédermite interpolation
problem with MPH quartic curves. For graphical applicatio@$,interpolation is sufficient. However,
for tool path generation, we neetf (or higher) interpolation. We know that far! interpolation, the
cubic polynomials are sufficient in general case and the PH quintic curves are needed in the plane PH
curve context (Farouki and Neff, 1995; Moon et al., 2001). In the space PH context, PH cubic curves
were used inG! interpolation problem in (Juttler and Mauer, 1999). Recently Farouki et al. sdlVved
Hermite interpolation problem with helical PH quintic space curves and sgztidlermite interpolation
problem with PH quintic curves in (Farouki et al., 2003b) and (Farouki et al., 2003a), respectively. In the
MPH context,G! interpolation using the MPH cubic curves is studied in (Choi et al., 1999). However,
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C1 interpolation is not achieved until now. In this paper, we achieve it with MPH quartic curves using
CY? interpolationexplained in Section 4.

2. Rootscharacterization of MPH curves

Recently, Moon (1999) showed that the necessary and sufficient condition for a polynomial curve
y (@) = (a(t), b(t), c(t)) in the three-dimensional Minkowski spaB&! to be PH is that for its velocity
functiono (r) (;that is,o (1)? = a’(t)? + b'(t)? — ¢'(¢)?) there exist four polynomial functions(z), v(z),
o (1), w(t) satisfying the following relations:

o) =u®)?+vt)? —w(®)?— p(t)%
d'(t) =ut)® —v(t)® + o)* - p1)?,
b'(t) =2u(t)v(t) — 2p(t)w (1),
dt)=2u@®w(t) —2p)v(t).

In this section, we reformulate this theorem into more convenient and useful form using complex
representation. We will seek the results which can be obtained by observing the roots of polynomials
in complex representation as in the characterization of PH curves by their roots (Ahn and Kim, t.a.).

Definition 1. Two complex numbers,,z, aresemiequalf z; = z, or z; = 75, (denote byz; ~ z,) and
71, Zo are distinct up to conjugate if, z, are not semiequal.

Definition 2. For a real polynomiak (z) such that(¢) > 0 for all z, denotgh(t)] the set of all polynomial
curvesa(t) such thata(r)2 + b(1)?> = h(t). We say that two polynomial curves (1) = (a(t), b(¢)) and
B(t) = (c(t),d(t)) are of the same cla$k ()] if a ()2 +b(t)? = c(t)?>+d(t)> = h(t). A polynomial £ (¢)
is a member of ()] if there exists a polynomial(¢) such thaiB (r) = (f(¢), g(¢)) or B(t) = (g(®), f (1))
is a member ofh(r)].

Theorem 3. A polynomial curvex(r) = (a(t), b(z), c¢(t)) in the three-dimensional Minkowski spagé*
is a MPH curve if and only it’(¢) is a member ofa’ (1)> + b'(t)?].

Proof. Supposex(r) is a MPH curve, that is, its velocity functiom(r) = (a’(¢)? + b'(t)? — ¢ (1)?)Y/?
is @ member ofP[t]. Thus,da’(t)? + b'(1)*> = ¢'(t)?> + o (1)%. That is,c'(t) is a member of the class
[a' (1?4 b/ (1)?].

Conversely, if¢’ (1) is a member of the claga’()? + b/(¢)?], then there exists a polynomia{r) such
thata'(r)? + b'(1)? = ¢'(1)® + k(t)2. This polynomialk(¢) is a velocity function of a polynomial curve
a(t) in the three-dimensional Minkowski%1, and hencex(¢) is a MPH curve. O

The above theorem has an important mean@igen a nonnegative polynomiaiz), we can determine
MPH curves inR?>* whose velocity functions are members of the equivalence [@&g3. To make this
fact more clear, we need the relation between the members of thg/elags
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Lemma 4. Suppose two plane polynomial cunwest) = (a1(¢), b1(t)) andaa(t) = (ax(t), b,(¢)) are of
the same clasfi(r)]. Assume the complexified curvgsr) = a;(t) +ib;(¢) for j =1, 2 are factorized
over the field of complex numbets Then each root g8, (¢) is semi-equal to one of the roots 84(z).

Proof. By the assumption|81(¢)||° = ||B2(¢)||?> = h(z). Let r; for 1 < i < k1 be the real zeros 0f(r)
andc;, ¢; for 1 < j <k, the complex (not real) zeros 6f¢) and their conjugates. Clearlys are zeros
of both g1 and 8, and all complex (not real) zeros gf and g, must bec; or ¢; for all j. That is, each
root of 8,(¢) is semi-equal to one of the roots (). O

Theorem 3 and Lemma 4 tell us that if a polynomial cusu@) = (a(z), b(¢), c(¢)) in the three-
dimensional Minkowski spac®&?! is a MPH curve, therw is controlled by the plane polynomial
curvea(r) = (a(t), b(t)) and the possible forms af are completely determined by the linear factors
of complexified hodograph a@f. In summary, we get the following theorem.

Theorem 5. Supposex(r) = (a(t), b(t), c(¢)) is a polynomial curve in the three-dimensional Minkowski
spaceR?!. Letr —r; (1<i <ky) andt — c;j (1< j < k) be the linear factors with real coefficients
and with complex coefficients of a complexified plane polynomial quéxe= a’(t) + ib’'(¢). (That is,

y () =KLt —r) [T24(t — ¢;).) Letd; be a complex number semi-equaktofor j =1, ..., k.
a(t) is a MPH curve |f and only |t’(t) |s the real or imaginary part of a new compIeX|f|ed plane
polynomial curves (1) = k ]'[l 1t —=r) ]'[ —d,), wherek is a complex number such thig || = ||K]|.

Throughout this paper, the complexified cube) represented in Theorem 5 is called the dual curve
of y(¢).

Example 6. Given two polynomials:(¢) = 13 — 312+ 5¢ + 1 andb(¢) = 1> — t + 2, we will determine all
possible MPH curvesa(t) = (a(z), b(?), c(t)) By factorizing the complexified plane polynomial curve
y(t) =d'(t) +ib'(t) overC, we gety (1) = (t — 1—i)(t — 2+ 3i). Sincek = 1, k = €°. By Theorem 5,

¢’ (t) must be the real part or imaginary part of the following polynomials:

et —1+i)¢t —2+3i), et —1—i)t —2-3i), et -1+t —2—3i).

Especially whe® = 0,c(¢) isone oft> — 3t — 1, 4t — 5, —4¢ + 5, 1> — 3t + 5, —2¢ + 1. Thus, all possible
choices ofx(¢) = (a(?), b(t), c(¢)) are determined by the choice af):

ct)=34°—3r"—t+co, 2°—5t+co, —2*+5t+co,

—t*+t—co, Or =31 +5¢+co

The next example shows how to determine MPH curves whose velocity function are members of
pre-assigned clags (z)].

Example 7. Let h(t) = t* — 63 + 23t2 — 34t + 26. By factorizingh(¢) overC, we get
h(t)=(t—-1—-D)(t—-1+i)(t—2—-3i)(t — 2+ 3i).

Thus the possible choices faf() andd’(¢) are
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(@@®).0'@®)=((r*-3t+5), (2 - 1), ((r*—3—1),(-4+5),
((f* =3t —1), (4t —5)), ((f*—3t+5), (-2t +1)).

Sincek = 1, let k = cosy + isind for real numberd. The corresponding choices faf(r) are
cosd (1?2 — 3t — 1) + sinf(4r — 5) and co® (t? — 3t + 5) + sinf(—2¢ + 1).

Theorem 5 means that the polynomial MPH curveRifi! is completely characterized by the roots
of the hodograph of its spine curve. In the following subsections, computing the speed function and the
curvature of the envelope which a MPH curve generates, we consider how the spine curve and its dual
curve whose hodograph has roots semi-equal to those of the spine curve work on the resulting envelope
of the MPH curve.

2.1. Envelope

First, consider a polynomial MPH curve(r) = (x(z), y(t), r(t)) € R>1. Then the equation of the
resulting envelope of the family of circles centeredsat), y(¢)) with radiusr(z), denoted byE. (), is
given as follows:

EL(t) =a) —rt)mL(t),
where

a(t) = (x(0), y(1)),

o (1) =X ()2 +y ()2 —r'(1)?,

ma () = (r’(t)x’(t)iy’(t)o(t) r’(t)y’(t)w’(t)o(t))

: XOP+ym2 T X024y )

Using complexified curvea () = x(¢t) + iy(¢), «'(t) = x'(t) + iy’ (¢t) andv(t) = r'(¢) + io (¢), we can
rewrite the envelope as follows:

EL(t) =a) —r(t)wx(?), (2.1)
where
0. (t) = o' (Hv(t) o_(f) = o' (Hv(t)

X ()2 + y' (1) X024y ()2

Remark 8. Sincey (¢) is a MPH curvep’ andv are of the same class (i.dq’|| = ||v]). So, we have
that|w+ ()| = 1.

Next, we compute the speed function(§mf the envelope curve with the help of the following lemma:
Proposition 9.

(1) For a complexified plane curwe(z), the following two equations hald

a
<ww):“m“ T
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(2) For a complexified plane curvwe(r), 8(¢) with ||o’|| = || 8’|l, the derivative ofv (1) = is given

m IIﬂ I
as follows.

o = ille || (kq + kp)

wherex, andkz are curvature otx and g, respectively.

Proof. (1) From the Frenet formula, we get

( . ) (1) <ds)N<z> o i =2 o
= =Kq| — =Kyl ||I = KqllO .
o] dr o]

Note that In{[lo’[|2) = Im(c/&') = 0 andik, = 'nr|<a”o; ) Thus

Im@a”)  Im(a’a”) Im(e’a”)
[(& = — = = — = —[(a,
a3 '3 lle'I3

(2) o’ is computed as follows.

“'= (IIZ/II IIZII) (Ila/H)/(IIZII) " (IIZ:H)(IIZII)/

<ﬂ/> i = etk =il (o + k). O
=K, l Kgl = K la) o K Kg).
“=\sn) e’ o T « T

Now, we compute Sp). Note thatE’ (1) = o'(t) — r'(t)ws(t) — r(t)w/ (t). SO, Syir)? is given as
follows:

Sp(t)? = EL(NEL(t)
= (&' (t) — ' (Dw(t) — r(t)a/i(;))(a/(,) DL t) — r(t)w;(t))
= /O |* + )l l? + oL |2 - F (@Fz + d o)

—r(d' @y + a0, + rr (@ze, + wiol).

By Remark 8, we gebzw), + wi0, = 0. Henceforth

Spi)? = [« O |* + )2 + rPlll | — 27 Re(e'@z) — 2r Re(e'aly). (2.2)

Moreover, for
dor=a'av(n)/(x*+y%) (ore/av(n)/+y'%)
=v(t) (orv(r)),

we have

Rela'owr) =7, (2.3)
LetV(r) = fé v(s) ds. Then by Proposition Qw.)" are given as follows:

(@) =iwillo (ke +Kky) =iog o || (ke —kv),

(@-) =io_|o||(ka + Kv).
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Thus we have

Re(e'w}) = Re(o' (—h)ax ||| (o F 1v))
= Im(a'@5) ||| (ke F Kcv)
= Fo||la'|| (ke F &v). (2.4
Plugging (2.3), (2.4) into (2.2), we get the following

Spit)? = [l I? + 7% + rPlos e I (ke F kv)? — 27'% — 2r (Lo ||| (ke F K1)
= (loI> = r'?) F 2ro [lo || (ke F kv) + r2l [P (ke F v)?
, 2
= (rlle' (ke F kv) F o)

Remark 10. (1) If we apply the fact that the conjugation for complex curves is equivalent to the reflection
for plane curves, then the second part of (1) in Proposition 9 is clear.

(2) Sincelld' ||k, = m@a’) the above equation implies that for a polynomial MPH cupe) =

a/”2 1

(x(@), y(t), r(t)), the derived envelopes are (plane) PH curves whose speeds are rational.

2.2. Curvature of envelope

In this subsection, we compute the curvature of the envelope. Le},3f¢), N(z) and«(¢) be the
speed function, the unit tangent vector field, the unit normal vector field and the curvature of envelope
curve, respectively. Since we are dealing with sweeping of circle, it is clear that

a(t)=E+(@) Frt)N(1). (2.5)
Thus we getv. (r) = FN(¢) and

/(1) =FN'(t) = £k (1) SPt) T (1).
So,

o T ol (ke Fav)EL | oLl || (kg F ky)(@ —r'oz —roly)
Sp s sp’

Using the followings:

— !5 i _ .
() s = iim O =P (OT) =1 F o
2 a)ia)_i = 1,

Q) wrwl = —ille[[ (ke Fkv),
finally, for Ay = ||| (ky £ Kkv), We have
iAx(j:o +ir') —iAgr —rAZ A

sz _:F(I‘A¢:FO’).

K =
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3. Hermiteinterpolation

We want to find a regular PH quartic in a Minkowski sp&@* which satisfying the following a first
order Hermite data:

a(0) = P, a(1) =Py, (3.1)
o'(0)=Dg,  «'(1) =Dy, (3.2)

whereP; = (x¢, yx, 1) andDy = (df, dy , ex). We will denotez;, = x; + iy, andd, = dff +id; .

In fact, we are seeking four polynomial$t), y(z), r(t), o (t) such thaix'(¢))2 + (y’ (t))2 (r' ()% +
(o'(1))?. Let a(t) = x(t) +iy(t) and B(t) = r(t) + io(t). We know that ifa’(¢) is factorized into
k(t — w1)(t — wp)(t — w3), thenp'(¢) is given byke? (t — wi)(r — w3)(t — w}) Wherew’; is a complex
number semi-equal t@; j =1, 2, 3. From the Hermite data, we get the following constraints:

z1=Kk(3 — 381+ 352 — S3), (3.3)
do = —kS3, (3.4
di =K(1— S;+ Sz — Sa), (3.5)
P1=6€"k(3 — 551+ 355 — S3), (3.6)
do = —€ks3, (3.7)
di =€’k(1—S7 + 85— S3). (3.8)

Whereaj =e;+i,/Ild;||?— ejz. for j = 1,2 andS; andS; are thejth symmetric polynomials ove;}
and{w7}, respectively.
Depending on the choices of;, we have 4 cases.

() o =w;forall j=1,23.

(I wj =0, andw} =w; for j =2,3.
() wi=o,;for j=12andw; = ws.
(IV) o' =a,for j=1,23.

Casel. In this caseS; = §; for j = 1,2, 3. From Egs. (3.4), (3.5), (3.7), and (3.8), we get
do _ o _h

do  di

6 is computed from the above equation and the system becomes underdetermined. If
b_h . _Ree'n) (3.9)
do dp

holds, then there exists infinitely many solutions kow ;. If not, then there exist no solutions. Note
that if Eq. (3.9) holds, thep(r) = €%a(z), that is, the curves(¢) is a rotated curve ak(¢) which is a
projected curve ofi (). It is a degenerate case. To solve this Hermite interpolation problem, it suffice to
use a cubic curve. Strategy is very simple: First solved@hédermite interpolation problem iR? with
projected data using planar culgi¢). Theng(z) is a rotated curve ak(¢) by 6. Finally, taking the real

part of 8(¢) gives the solution. If we need quartic curvé), degree elevation can be performed.
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Casell. From Egs. (3.4), (3.5), (3.7), and (3.8), we get

d .
22
do w1
% i (1-w1)
al (1 - 651) .
Dividing above two equations, we get
a . )_\.
a A
wherea; =d;/d; for j = 1,2 andi = =% Note thath is written as
, 61— 6
A=ré’, n= 12 9 (3.10)
whered; = arg(a;) for j = 1, 2 (note that- can have negative values).
Thus,
1
w1 = —.
YT 14 e

Once we findw,, it is quite easy to find, andws.
From Egs. (3.3)—(3.5), we get
w1(w2w3)Zy = —do(5 — 3(w1 + w2 + w3) + 3 (w1(w2 + W3) + Ww3) — W1 (W2w3)),
w1(wow3)d; = —do(1 — (w1 + w2 + W3) + W1(W, + W3) + Wow3 — W1 (Waw3)).
Let 71 andT; be the symmetric polynomials ovep andws. Then we get the following linear equation
for Ty, T»:
(wlzl +do(3 —w1) do(—3+ %au)) (Tz> B (do(—%1 + %w1)>
w101 +do(l—w;) —do(l— w1) i) \ —do(l—wy) /°
Finally, k is given byk = —-92_. Plugging theses quantities into (3.6), we get

w1T> "
r1=Re(p1) = Re(¢k (§ — 357 + 355 — 53))
d
= Re(—%(%1 @1+ T+ 3@ T+ To) — alTZ)). (3.11)
142

Thus the only known in the above equatiorrisAfter tedious algebraic manipulation usirn{jjn2 =
Id; ||%, we get the following quadratic equationsin

cor’ 4+ c1r + ¢ =0, (3.12)
wherecy, c1, ¢, are given as follows:

2co = —6r; + Re(agl(Gzl + die7%n — dl)),

2cq = 12r1 cos(n) + Re(ag (die™" — 12267 — d1e737)) + 21Im(do) sin(n),

2c; = —6r1 + Re(ay ™ (do — doe 2" + 6z,€727)).
See Appendix A for derivation.
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Caselll. Note that Rég(1)) = Re(B(r)). Hence
r1=Re(B(1) =Re(B(D)),
eo = Re(do) = Re(B(0)) = Re(p/(0)),
e1 = Re(dy) = Re(B'(1)) = Re(B' (D)),
and

Re(ke? (t — @1)(t — @) (t — w3)) = Re(ke™ (t — w1) (t — w2) (1 — @3))
= Re(k€” (t — w1)(t — wp)(t — @3)),

wheref* = —26, — 6 andd, = arg(k). From the definition oﬁj =e;+.,/Ild;|I?— ejz., we have four cases

for EIQ, al. Thus if we solve case Il for all possible four cases, then we can cover case lll.
CaselV. It is similar to case lll. By solving case |, we can also solve case IV.

Remark 11. As in the case |, if the following conditions are hold, then there are no MPH curve to solve
C* Hermite interpolation problem.

dO al (do )
—_— =, r Rel —2z1 ).
3 ds 17 e 1

Collecting the above results, we get the following algorithm@drHermite interpolation using MPH
guartic curve.

Algorithm (C* Hermite interpolation using MPH quartjc
Input: Py, P, Dg, D, € R%1
Output: MPH quartic
(* Do, D1 must be space-like vectosy
1. Computezy, z1, do, d1, do, ds. o
2. (* We have four cases according to the sign of imaginary pag,af;. x)
.21 <21 —2
4. for each 4 cases
5. doay<« % g « &
do d
6 ifag=a,
7 then if r; = Re(zy/ap)
8. then solve the plane cubic Hermite interpolation problem
9 elsereturn “There are no solution.”
0

10. else solve case I

Although we tookn as 5% in Eq. (3.10),25% + 7 is also possible. Thus if a solution for

Eq. (3.12) is negative, then we must interpret it bye"(%@*”) as in the polar coordinate in plane.
By the Algorithm C! Hermite interpolation using MPH quartiave get 8 MPH quartics in generic case
(see Fig. 1).
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SE5E
/7 )% > >
T
- - < <

Fig. 1. 8 MPH quartics solvingCl Hermite interpolation problem of an Hermite dat® = (0,0,0),
Dg = (0.99340.072240.8761); P; = (0.6098 0.4777,0.0.6977, D; = (0.06590.2298 0.0780. Dotted lines are
given tangent vectors and solid curves are interpolating MPH quartics.

Remark 12. To guarantee the existence of solution, we need the discriminant of the quadratic Eq. (3.12)
to be nonnegative:

¢ — Acoep > 0. (3.13)

We say anC! Hermite dataPy, P;, Do, D; an admissible configuratiorfor (direct) C! Hermite
interpolation using MPH quartic if the above discriminant is nonnegative. See Appendix B for underlying
geometry.

To get a solution foc! Hermite interpolation problem, we suggestubdivision schemé there exist
no real solution for, then add a poin®y, and tangent vectdd, , atr = 1/2 and solve twaCl Hermite
interpolation problems:

a1(t): a1(0) =Py, @1(1) =Py, «1(0)=Do, @;(1) =Dy,
ax(t): @2(0) =Pyjz,  a2(l) =P1,  a5(0) =Dyjp,  a5(1) =Dy,

We takeP;,, andDy/, as the midpoint oPg, P, and Do, D1, respectively. Note that the subdivision
must be done recursively and adaptively. If there exists a solutiom,foence a MPH quartic, then
subdivision is useless.

3.1. Numerical results

Data are generated by random number generator fiRjng (0, 0, 0). Only space-like vectors are
chosen as tangent vectddg, D;. First example data are as follows:

Po=1(0,0,0), Do = (0.9934 0.07224 0.8761),
P, = (0.6098 0.4777,0.6977, D, = (0.0659 0.2298 0.0780.
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Fig. 2. A result of subdivision scheme. We divide once. Light curve is first segment and dark curve is second segment. Right
figure is the same curves in a different view point. Dotted lines are tangent vectors.

Fig. 1 shows eight quartics obtained by Algorithfit Hermite interpolation using MPH quartic
Dotted lines are tangent vectors and solid curves are interpolating quartic curves. Second data are as
follows:
Po=(0,0,0), Do = (0.8299 0.3331 0.6852),
P; = (0.5425 0.0361 0.5588), D; = (0.3227,0.3431 0.4265).

In this case,D = ¢ — 4coc, is negative. Hence we subdivide once to el = %(Po + P;) and
D= %(Do + D). Discriminants for these two small problems are positive and we get solutions. Fig. 2
shows the result. Light curve is the first segment interpolaBado, P1/2, D12 and dark curve is the
second segment interpolatiri®y », D1/, P1, D1. Right figure is the same curve with a different view
point. Dotted lines in right figure are tangent vectors.

4. CY2interpolation

Note thatG* interpolation using MPH cubic is completely solved (Choi et al., 1999). However,
C! Hermite interpolation using MPH quartic is not always possible and there exists an admissible
configuration of Hermite data presented in Appendix B. Now we will introduce a new conGépt,
interpolation. ByC/2 interpolation, we mean that given ddg P, Do, D1, to find a curvex(¢) such that

a(0) = Py, a'(0) = Do,
06(1) = Pl, O{/(l) = SDl

for some nonzero real numberThat is an intermediate version 6f andC* interpolation.

(4.1)
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From the Hermite data, we get the following constraints:

z1=k(3 — 3514 352 — S3), (4.2)
do = —kSs, (4.3)
edy =K(1— S1+ S2 — S3), (4.4)
Br=€"k(3 — 357+ 355 — S3), (4.5)
do = —€ks3, (4.6)
edy = €k(1— 7 + S5 — S5, 4.7

whereaj =e;xi /[d;|I2— ejz. for j =1,2 andS; ande are thejth symmetric polynomials ovew,}
and{a)j}, respectively.

Note that it suffice to modify case Il in the (direaf) Hermite interpolation presented in Section 3.
From Egs. (4.3), (4.4), (4.6), and (4.7), we get

%:eﬂ'eﬂ ﬁzeﬂ'e (1_“’1).

do @1 dy (1-a1)
Dividing above two equations, we get

a1 . X

a A
wherea; =d;/d; for j =1,2 andi = l;—‘l”l Note that is written as

. 61— 6
A=rel, n= ! O,
2
whered; = arg(a;) for j =1, 2. Thus,
1
w1 = —.
] + ren

Note thatw; runs on the perimeter of a circle which passes 0 and 1 and this circle is completely
determined by, a; sincer is the only variable in;.
Once we findw,, it is quite easy to find, andws. From Egs. (4.2)-(4.4), we get
w1(wa03)21 = —do(3 — (w1 + w2 + w3) + 3 (w1(w2 + W3) + Wows) — W1 (W203)),
sw1(wa03)d; = —do(1 — (01 + w2 + w3) + W1(W2 + W3) + Wow3 — W1(W2w3)).

Let 7, andT» be the symmetric polynomials over andw;. Then we get the following linear equation
for Ty, T»:

( w1z +do(3 —w1)  do(—3+ %w1)> (T2> _ (do(—% + %w1)>
ew1dy +do(l —w1) —do(l— 1) I —do(1—w1) )
The determinant of the above matrix is given as follows:

Det(r) = —2do(1 — w1)(1 — 3wy1) — z101(1 — w1) + gediw1(2 — 3wy). (4.8)
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Under an assumption Det) # 0, we can findly, T as follows:
1 do(1 — 3w1 + 20?)

Ty=—= )
2 £d1(2w1 — 3w?) — do(1 — 4wy + 30w?) — 621 (w1 — @3)
_ 1edi(Bwr — 40?) — 1221 (w1 — ®%) — do(8 — 11w + 8Bwd)
=72 8d1(2a)1 — 30?) — do(1 — 4w + 30?) — 621 (w1 — ?)
kis given byk = ——%-. Plugging theses quantities into (4.5), we get
Br=e€"k(3 — %Sl +353 — 53)
do _ _ _

= _E(% — @1+ T) + 3@1T1 + Tp) — 01 T2)

_ N(wy,8)

D)’
where

N (o1, &) = edidow1 (&1 — w1) + do(62101(1 — 201 — w1 + 201@7)
+ do(@1 — 1 + 0] — w127)) (4.9)
D(wy) = 6w1do(1 — 3wy + 20%) = 6w1do(1 — w1) (1 — 207). (4.10)

To satisfy theC'/? interpolation condition, we must find such thatr; = Re(81). B1 is given as
follows:

= N (w1, €) — Ae + B
"7 D) ’
where
_ dydow1 (w1 — w1) ’ (4.11)
D(w1)
B N(w1, &) — edidowy (01 — 601). (4.12)
D(w1)
(Note that the numerator & does not have angyterm.) Thus
r1 = Re(B1) = Re(A)e + Re(B). (4.13)

By choosingr such that ReA) # 0, R&B) # r, and Detr) # 0, ¢ is determined.

Remark 13. There are at most five singular solutions foand henceforth fot, (see Appendix C).
Hence for all- except only at most five singular solutions, we can ach@&Vé interpolation.

5. Two step Ctinterpolation using MPH quartic

As we know, one ste@’! Hermite interpolation using MPH quartic is not possible in general. In this
section, we present a two st€p} Hermite interpolation scheme. Let, r1, do, d1, do andd; be C* data
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with an assumption that the initial position is the origin. Choose an appropriate pagitien) between
the origin and(z;, r1) and an appropriate velocity,. (d. is determined automatically from these data.)
As you will see in the following argument, the choices #orr, andd, are almost free. For example, we
can set
o 7 4 d. — do+d;
* 2 ) =3 2 ) * 2 .
Now, consider twaCY? interpolations—aC/? interpolation from the origin to the new mid point and
a C/2 interpolation from the terminal point of the initial data to the new mid point. According to the
previous argument in Section 4, we can fi@d? interpolants for each case. The key point is how to
makee in two interpolation problem coincide.
To complete this, first consider Eq. (4.13) again. Assume dhiatgiven. Then the only variable of
Eg. (4.13) is.
Usingi =re”, w, =

from (4.10) and (4.11), we get

T
m Z m Zi(re ™ —1)
A=-—1—i= L i 5.1
3rei—1  3(el—Loern—1)" 1)
wherezt = dldoe " andm = sin(n). From (4.9), (4.10) and (4.12), we have
_ 622(re 1) 4 r(—e 4 el 52)

6(ren — 1) ’

where z; = do’l (for details, see Appendix C). Using (5.1) and (5.2), we get a quadratic equation
equivalent to f4 13) as follows:

E2r + E1(8)r + Eo(S) =0, (53)
where
Ey = My + Mze, Eo= M3+ Mye

for some constantd/,, M,, M3, M, computed from given data anfl, is also a constant without
parametee. Assume thak, M, # 0. Then the discriminanE? — 4E, E, of (5.3) is a quadratic equation
in ¢ and the coefficient of? is positive. Therefore foe sufficiently large,E? — 4E,E, > 0, i.e., (5.3)
has roots.

Remark 14. Since Eq. (5.3) has roots if its discriminafif — 4E,Eq > 0 (whenE; # 0), even thougls
is not sufficiently large, there are possibilities that (5.3) has roots. For exampdesdtisfyingE, Eq < 0,
(5.3) has roots.

Next, consider aC'/? interpolation from the origin to the new mid point. For given data
Z., Iy, dg, do, d, d,., we solve the following equation:
r. = Re(A1(w}))e + Re(B1(w})). (5.4)

For second interpolant, we solve the following equation from the #Hataz;, r, — r1, —dj, —dy, —d,,
—d,:

ri —r1 = Re(Ax(wi"))e + Re(Ba(wih)). (5.5)
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Note that for each of (5.4) and (5.5), if we assume that all data are given ekGepen only finited,s
satisfy E;, = 0 or M, = 0. By the previous argument and Remark 14,dpexcept these solutions, we
can get twaC/2 interpolants with same scaling factarThat is, we get a@* interpolant from the origin
to the new mid pointz,, r,) with the velocity dataly, do, £d,, ed, and anothec? interpolant from the
new mid point(z,, r,) to the initial end poin{z,, r1) with the velocity datad,, ed,, dq, dy, respectively.

Remark 15. There may exist at most 10 singular choicesifer 5 from each divided”/? interpolation.
However, these 10 singular cases can be predetermined by the input data.

Algorithm (Two stepC! Hermite interpolation using MPH quartic
Input: Py, P, Dg, D1 € R?!

Output: MPH quartic

(* Dg, D1 must be space-like vectos3

1. Computezy, z1, do, d1, do, ds. i

2. (* We have four cases according to the sign of imaginary pardsg,af;. %)
3.1« 721—2

4. for each 4 cases

5. doag <— 0 gy « gi

6. if ag = al

7 then if I"1=Re(21/a())

8 then solve the plane cubic Hermite interpolation problem

0. elsegreturn “There are no solution.”
10. elseif admissible configuration
11. then solve case Il in (one steg)! interpolation
12. else make a mid point and solve tw@%? interpolation.

Note that for the (adaptive) subdivision scheme, 12 in the above algorithm 15 should be changed into
“make a mid point and solve tw' interpolation problerit

5.1. Numerical results

We apply our two ste@’! Hermite interpolation scheme to a data:

Po=1(9.4347419.1296 0.259429, P; =(19.3208 21.4930Q 0.375256,
Do =(10.0124 19.2597,0.57022§, Dy = (126065 14.4561, 0.024123.

Fig. 3 shows the resulting interpolant. Dotted lines are scaled tangent vectors, light curve is the first
segment and bold curve is the second segment. Also the left figure in Fig. 4 shows the radnssig
r) and spine £ versusy) plot. The right-hand side figure in Fig. 4 shows the envelope when we interpret
the interpolant as a curve representation of one parameter family of circles.

See Figs. 5 and 6 for the second data set:

Py =(12.8242 5.87048 0.164317, P; =(20.24756.26066 0.735760,
Do = (4.19536 17.9409 0.046603, D, =(121594 10.6271,0.021634.
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|7
20 25 y30 35 30 X

Fig. 3. A MPH quarticC! Hermite interpolant. Dotted lines are given tangent vectors, solid light curve is the first segment and
solid bold curve is the second segment.
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Fig. 4. Left: Radius and spine plot. Right: Resulting envelope.

'3

Fig. 5. AMPH quarticC1 Hermite interpolant. Dotted lines are given tangent vectors, solid light curve is the first segment and
solid bold curve is are the second segment.
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Fig. 6. Left: Radius and spine plot. Right: Resulting envelope plot.

Remark 16. From the fact that the success of two s@&hinterpolation is guaranteed with probability 1,
we can infer that the (adapted) subdivision scheme is a modified version of the two step method.

6. Concludingremark and further studies

We characterized MPH curves &>*: All MPH curves are determined by the roots of hodographs
of their complexified spine curves and some conjugates of roots. In other words, for a MPH curve
a(t) = (x(2), y(), r(t)), we proved that a curve(r) is MPH if and only if the complexified curve
r'(t) 4+ o (t)i whereo (¢) satisfiesc’(1)? + y'(1)? = r'(t)?> + o (t)? is obtained by rotating the curve whose
zeros are semi-equal to thosexdfr) + y’(¢)i and the envelope generated by the Mét) is a rational
PH curve.C?! Hermite interpolation problem with MPH quartic curve was also dealt. To overcome
the difficulty in guaranteeing the existence of solutions, we introduc®d Hermite interpolation and
showed that two ste@! Hermite interpolation is possible.

As further studies, we introduce two research directions regarding the choices. First is the choices for
intermediate data. In two step interpolation scheme, as we pointed out at the beginning of Section 5,
the choices for intermediate point and its speed data are almost free. As it is well known that polynomial
curves of high degree contain wiggles, bad choicelfds apt to lead wiggles in the resulting interpolant.

For this issue, we need more insight on the shape of polynomial curves and variety of numerical data with
varying intermediate data. Second is the choice-folo get the best choice for, we need some criteria

on the quality of the resulting interpolant. Minimization of curvature variation of interpolant may be an
answer for this best choice problem. Currently, we are tackling this problem in this direction.

Appendix A. Coefficients of a quadratic equation

After plugging all data into Eq. (3.11), we get the following quadratic equation in
co+cir +cr® =0,

where the coefficients; are given as follows:
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2co = —(dovdoxdv) — doydoydy, + doydocdry — docdoydyy
—6d2.r1 — 6d§yr1 + 6doy doy 21, + 6doydoyz1, — 6doydo, 21, + 6doydoyz1y
+ do. doxdy. COS(20) + doydoydy. COS2n) — doydodi, CO(2n) + do.doydy, COS21)
+ doydoda, SIN2n) — doydoydy, SIN2n) + docdoydyy, SIN2n) + doydoyds, SIN20),

2¢1 = dodo.dy, COS) + doydoyd1, COSn) — doydodr, COSN) + doydoydry COSn)
+ 12d¢, 1 cOS(n) + 1244, r1 cos(n) — 12do,do. 21, COSn) — 12do,doy 21, COL)
+ 12do, do, 71, COS(n) — 12do, doyz1, COS(n) — doxdordy, COS3n) — doydoyd1. COS(31)
+ doydoydi, cOS(3n) — do,doydr, CO3n) + 2do,d2. Sin(n) + ZJoydéy sin(n)
+ doydoydr, SIN(M) — doxdoyda. SIN() + doydordiy SIN(Y) + doydoydi, SIN(n)
— 12do, do. 21, SiN() + 12do.doy 21 SIN() — 12do.dox 21, SiN(n) — 12do,doy 21, SiN(7)
— doydoydu, SIN3N) + doxdoyda. SIN(3) — doxdoyduy SIN3) — doydoyday SIN(3n),

2c, = do.d§, + docdg, — 6d§,r1 — 6d3,r1 — do.dj, cO(2n) — do.d, CO2n)
+ 6do, do, 21, COS217) + 6doydoyz1, COS(21) — Bdoydo, 21, COL(21)
+ 6do.doyz1, CO2n) — doyds, SIN(2n) — doyds, SIN(2n) + 6doydox 21 SIN(21)
- 6C}‘OdeyZZLx sin(2n) + GJOXdezly sin(2n) + GjOy'dOyzlyv sin(2n),

wheredo = do, +ido,, d1 = dy, +idyy, do = do, +idoy, d1 = dy, +idy, andz; = z1, +iz1,. To compute
the above coefficients, we use Mathematica. After some manipulations, we get compact form:

2co = —6||dol|?r1 + 6 Re(dodoz1) + Re(dodod) (cOs(2n) — 1) + Im(dodods) Sin(2n),

2c1 = Re(dodod) cos(n) + 12]|do||?r1 cos(n) — 12 Redodoz;) cos(n) — Re(dodod1) cos(3n)
+21m(do) | doI? sin(n) + Im(dodody) sin(n) — 12 Im(dodozy) sin(n) — Im(dodody) Sin(3n),

2c2 = Re(do) [|dol|* — 6]l dol|*r1 — Re(do) [|dol|* cos(2) + 6 Re(dodoz1) cos(2n)
— Im(do)lldolI2sin(2n) + 6 Im(dodoz1) Sin(2n),

equivalently,

2c0 = —6r1 + Re(agl(Gzl +de%n — dl)),

2cq = 12r1 cos(n) + Re(ag (die™" — 12267 — d1e737)) + 21Im(do) sin(n),

2c; = —6r1 + Re(ay ™ (do — doe 2" + 6z,€727)).

Appendix B. Existence of solution

To guarantee the existence of solution, we need the discriminant of the quadratic equation (3.12) to be
nonnegative:

C% - 46‘06‘2 = 0. (B.l)
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Introduce new symbols, 8, y such that

co=—3(r1 —a), co=—-3(r1— B), c1=6(ry cosn + y).
Then

D/4=9{—Sin2nrf+2(y005n— a;ﬂ)rl—l-yz—aﬁ}.

Letr;” andr; be roots ofD /4 = 0. Then the possible range afis a closed intervalr; *, r;] if other
data are fixed. The whole set of d&a Dy, D; guaranteeing the existence of solution forms a manifold
of dimension 9 iMR3 x S x S, whereS is the set of space-like vectors R

The coefficientsy, c1, co are rewritten as follows:

d d
2co = —6r1 + (6 Re(ﬂ> - Re(—1 - —1>)
=h) Q
do d
2y = —6r1 + (6 Re(ﬂ> - Re(—o - —°>)
a1 Q
d di\ d
2¢1 = 12 cosyry — (12 Re( ! —“7> - Re((—1 - —l>e—“7> + |m(—°) sinn>.
2 2 a 2

Let
d d
ho= —6r, + 622 — (—1— —1)
Q a
d d
hp= —6ry + 62 — (—" _ —").
aq Q a

Then 29 = Re(X) and 2, = Re(),). Consider a complex numbé(koe*i” + A€M,

1, . , Lgi 1 dp  di)
—Ref Z(ho" + 12€7") | = -6 _6R ) 4 ZRe( (22— %) e
o3t 41200 =—encom—ord T 5o (=)o)

And,
. — X m __
—}Re do _do gl =—}Re do U P =—}R d°e2
2 a 2 apay 2 a €n
1 do. . ) (d )
= ——Re|l —2sinni Im sin
2 (ao 7 a) "

Therefore, we get the following relations:

2co = Re(ho),
2c1 = Re(koe_i" + kzei"),
26‘2 = Re(kz).

In other words,
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26‘() = )\6,
2c1 = A§COSN + A§Siny + A, cosy — A, sing,
26‘2 = )\.5.

Assume that all data exceptare fixed. Then
C2=CQ+N, (BZ)

whereN = 2 Re(Ao — A2) = 3 Re((6z, — do + dl)(a—l1 — %)) is independent of;. Let M = (1)) — Ab).
Note thatM is independent of;. Thenc, = (cg + ¢2) cosn + M siny. Consider
[ (co. c2) = ¢ — 4coca
= c0S n(c§ + ¢3) + 2(cos' n — 2)cocz + 2 COS(co + c2) M siny + M?sinf g
>0. (B.3)

Thus we know that there exists a solution if and onlycif, ¢,) lies on the intersection of the line (B.2)
and the region (B.3). To view the geometry more easily, we rotate the line and the consbyThat

is,
(co) B (00545 —sin45’> (ul)
¢ ] \'sind® cos4B u )’

Thus the line and the conic are transformed into
1
V2
f s, uz) = cog n(u? + u3) + (cof n — 2) (uZ — u3) + 2v/2 cosy sinpMuy + sir? nM?
= —25sirf nu? + 2u3 + 2+/2 cosy sinnMuy + sir? nM?

= —2sifn(u; — K)>+ 2u§ + M?
>0,

Uy = N,

whereK = %M. Fig. B.1 shows the hyperbola and the line. The line and the hyperbola meet at

u, =, B. The line segment contained in the dashed region is the feasible region. Noté, Biats
always contained in the regiofi(uy, u) > 0. Thuse <0< B. If u} = 2—55(—1%1 + 6(% + 2—1) - (% -

g—i) — (% — 2—‘1))) lies betweenx and 8, then the solution exists.

Appendix C. All possible singular cases
C.1. Re(A) =0

Let us consider the condition R&) = 0 which is a necessary condition for (4.13) have a solution

_ d1dowy (@1 — w1) _ dadowy (@1 — w1)
D(w1) 6do@1(1 — w1)(1 — 2w1)
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Cc2
\ L
Co
Fig. B.1. Hyperbola and line.
Usingi =re", w, = ﬁ A is rewritten as follows:
A— d]_d() w1 w1 — w1 _ i d1d~oe*’7" rel —re
6dg 1—w 01(1 — 2wq) 6r do ren —1 ’
Letzi = %{fﬁﬁ andm = sin(n). Then

m 'z . m Zi(rem —1) .
= — - ] = — - - L.
3ren —1 3 (e —DHrem —1)

Thus R€A) = 0 is equivalent to Inzi(re™ — 1)) = 0. Let by = Im(z;e™) and b, = Im(z}). Then
Re(A) =0 if and only ifr = bo/b,. Thus we can choosefreely except = b,/b;.

C.2. ReB)=r1

First consider ReB) = r;. Then we gete = 0 and it implies that/x'(r)2+ y'(t)?|,=1 = O,
V()% + o (1)?],21 = 0. It contradicts to the regularity of MPH curve. Thus we must identify this case

N(ws, &) — ed1dows (@1 — 1)
D(wy)
_ 6dozi1(1 — 2@7) + do(@1 — 1)
6dow1(1 — 2w1)
_z (/w1 —-2) (—1/w1+1/wy)
(1/w1—2) 6(1/w1—2)

_ re 1 . —re M 4yl

2 reni —1 6(ren — 1)
_ 62§(re_"" —D+r(—em )
N 6(ren — 1) ’

r14Im(B)i = B =
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wherez; = dg% Thus taking the real part of the both part,

6ri(re’ — 1)(re" — 1) = Re(6z3(re™" — 1)° + (e — &) (re" — 1)),
equivalently,
(Re(62§e*2”i +e 2 1) — 6r1)r2
— (Re(12z567"") + Re(e™ — &) — 6r1(€" +€™))r + (6 Re(z3) — 6r1) =0.
That is,
(a1 — 6r1)r2 — (az — 6agr)r + 6(as — r1) = 0.

Thus we have at most two singular solutions. Moreover, the coefficient of the above quadratic equation
is predetermined by input data.

C.3. Det=0

Second, what if Det 0? From (4.8), a real numberis given as follows:

o G o= DAJor =3 —6/doWor =D _ . € 2
d; 2/w1—3 2er —1
wherez} = 2 — 6z;/dg andz; = do/d;. Sincee is a real number, Iigg) = 0:
0=1Im(r(zz€")(re" —z3)(2re™" — 1))
_ r(lm(ZZZe’7i)r2 —1Im(z;(225 + ezni))r +1m(z;z3€"))
= r(a’lr2 —dor +ds).

If r =0, thenw; is a real number and this also contradicts to initial assumption. Thus the singular
solutions come from the quadratic equatiin® — dor + dz = 0.
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