Graphical systems,
visualization and
multimedia

Computer graphics task 1

* Deliver images from computer to user

Example process

Program Monitor

3D model, 2D shape, Printer, projector, plotter, movie
animation, CT scan.... file, picture file, stereolitograph..

Platf PC Win, PC Lin, Mac, SGil...
atiorm b5 xsox wii. ...

CG reference model

- N\ ; N

Application Graphical
program :> system :>

. / _ J

Inside the boxes — standards
Between the boxes — standard interfaces
Separate modeling and rendering

Separate device-dependent and
device-independent parts

Reference model — detailed 11D

Application program
« Graphical data

— Models, textures, description, mapping...
« Animation

— Scripted, procedural (physics), interactive
» Application logic

Data sources
* Modeling, capturing, simulation...

Reference model — detailed 11D

Graphical system
Data processing (input, conversion)
Transformations
Projection
Clipping, visibility, lighting
Rasterization

Reference model — detailed 11D

Output device
* Device driver
* Physical device
* Qutput format

/f

Application
program

\

4

Graphical
system

\

Advantages of CGRM 1111

Device-independent application development
Application-independent device development

Standard interface GS < device
— Hardware acceleration, optimization

Standard interface APP < GS

— Rapid development, transferrable code
— Translation from APP language to GS language

CG reference model

Application

program

Graphical
system

Output
device

CG reference model

/

.

Application
program

~

-

j

N

Graphical
system

Geometry space

Output
device

Screen space

Graphical information
and rendering

Our focus

» 3D objects in geometry space
— some concepts explained in 2D, then extended

* Object representation (inside APP, GS)
* Object rendering (GS — Output device)

4 N\ 4 N

Application :> Graphical :> Output
program system device

\. J

Geometry space

¢ Scene
— Virtual representation of world

* ODbjects

— Visible objects
(“real world”)

— Invisible objects
(e.g. lights,
cameras, etc.)

Dimensionality

e 2D

— Shapes, images
e 2.5D

— Surfaces, terrains
3D

— Objects, scenes
e 4D

— Animation

MAE S e p T
LT 'y JLF

e
=
s

s

kY

Full scene definition

* Objects

— What objects, where, how transformed
* To be discussed early during course

— How they look — color, material, texture...
* To be discussed later during course

« Camera
— Position, target, camera parameters

Coordinate system

» Cartesian coordinates in 2D
— Origin
— X axis
— Yy axis

y-axis
X .

Coordinate systems

 Global
— One for whole scene

Local

— Individual for every model
— Pivot point

Camera coordinates
Window coordinates
Units may differ

Conversion between coordinate spaces

Global/local/camera coords. §1RA

19

Essential geometry

Position In space
Cartesian coordinates

Homogeneous coordinates

— Subtraction of points
— Translation

Notation: P, A, ...

Vector

Direction In space
Has no position
Subtraction of 2 points
Cartesian coordinates

Homogeneous coordinates

Notation: u,V,n

Basic operations

« Addition
Point + vector = point
Vector + vector = vector
« Subtraction
Point — point = vector
Point — vector = point + (-vector) = point
Vector — vector = vector + (-vector) = vector
* Multiplication
Multiplier * vector = vector

Transformations

Example: translation

* Move point by a vector

O
P(x,y)+V(t,,t) =P (X+t,y+t)

Transformation matrix 1

Unified way of performing transformations in
3D/2D spaces

Translation, rotation, scaling, projections...
GPUs are optimized for matrix operations

Applying a transformation
= Matrix multiplication

Transformations — translate FIhI)

y’=y+ty

Matrix notation:

(X', y'1) =(xy1)

Transformations — scale 1

factor s

Transformations — scale

X.S,

Y-S,

Matrix notation:

(X', y'1) =(xy,1)

Transformations — rotate 1

angle ¢
<0..360°%
<0..2™M

Angle
orientation!

Transformations — rotate 1

P(XIY) - P’ (X' ,Y')
X'’ = x.cos ¢ - y.sin ¢

y’ = y.cos ¢ + xXx.s1n ¢

Matrix notation:

(cosep sSing 0)
(x',y',D)=(x,y1)| —sing cosep O
. 0 0 1

Problem: local rotation 1

Transformation composition §1|

1. translate rotation center to origin: t(tx,ty)

2. rotate by ¢
3. Inverse translate by t'(-tx,-ty)

Matrix notation:

(1 0 0) cosp sing 0
(x,y'D=(XyD 0 1 O0f-sinp cosep O

Transformation composition §1|

« Matrix multiplication Is associative

A.B.C = (A.B).C = A.(B.C)
 Combined transformations can be re-used
(1 0 O0) cosp sing O 1 0 O)
(x,y'D=(xyD) 0 1 O0f|-sing cose 0| O 1 O
tx ty 1) 0 0 1)-tx -ty 1
)

COS @ Sing

(x', vy, 1)=(xVY,1) —sSing COS @
ty cosg —ty Sinp —ty ty singo+ty cosp —ty

\

Transformation order

« Matrix multiplication is not commutative

— Order of transformations plays role
A

y y

0 O o—0 0
',“ P"[X5,Y5] S P, y5] PYIX5,5]

o—© O

P[XUYAT P’[XZIYZ] ,' P[Xlryl]

3D transformations

translate

* rotate

(1 0 0 ' (cosp, Ssing,
0 cosep, —sSing, —Sing, CcoS@,
0 sing, CcoSo, ' 0 0
0 0 0 . 0 0

3D coordinate systems 11

* Right-handed coordinate system
» Left-handed coordinate system

A A
4 y

Z

e rotation direction

Row/column vector notation §IIE

(X', y'1) =(xy1)

Projection

Global/local/camera coords. §1RA

40

Viewing transformation 1

« Convert from local/world coordinates to
camera/viewport coordinates

1. rotate scene so that camera lies In z-axis
2. projection transformation
3. viewport transformation

Stage 1 — translate P—P’ 11]1]

Stage 2 — rotate PP—P”"—P” 111}

Rotated scene

Orthogonal projection 1111

projection

Orthogonal projection 1

Xp—X

° yp — y”,

« Z7 Is simply left out

 Matrix notation

(Xp Yo 2, 1) = (X", Y, 2 1)

Perspective projection 11]1]

projection

Perspective projection 111
Xy = ?

Vp = ?
Necessary info:
— distance between camera and projection plane

Matrix notation \

(Xo, Y Z,,0) = (X, Y, 2)

Viewport transformation

Viewport transformation

* Sy, Sy — scale factors

XV ax_XVmin

m

m

 Matrix notation

(X, Y1) = (X, ¥,.1)

\ SxXCrjin T XNVin - — Sy YCrin T YVnin

Welcome to the matrix! 1

1. local — global coordinates
— translate, rotate, scale, translate

2. global — camera
— translate, rotate, rotate, project

3. camera — viewport
— translate, scale, translate

* Transformation combine = matrix multiply

* Model transformation
— local — global coordinates

Viewport transformation
— global — camera

Clipping
Rasterization
Texturing & Lighting

Next week:

Rasterization, culling, clipping

