
Recollection 

• Models → Pixels 

 

• Model transformation 

• Viewport transformation 

• Clipping 

• Rasterization 

• Texturing 

• + Lights & shadows 

– Can be computed in different stages 
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So far we came to… 



Geometry model 

3 



Surface color 
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Now: Shading 
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Important 

recollections 



Bilinear interpolation 
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Bilinear interpolation 

• 4 corner points A,B,C,D with known values 

• 1 internal point X with unknown value 

• P = A + u.(B-A), Q = D + u.(C-D) 

• X = P + v.(Q-P) 

 

• Matrix representation 
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Application: texture mapping 

• Interpolate D↔A = P, D↔C = Q, P↔Q = X  
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Application: texture filtering 

• Consider 4 neighboring texels 

• Weighted average 
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Lighting and shading 



General problem 

• For a point in space, calculate lighting 

conditions and modulate the inherent object 

color to produce final pixel color 
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Lighting and shading 

• What is lighting 

– Computing amount of radiance (per wavelength) 

reflected from object towards the camera 

 

• What is shading 

– Creating illusion of space in planar images 

– Usually uses lighting but other options are 

available too – e.g. depth shading 
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Lighting 



Light source types 

• Omnidirectional 

• Spotlight 

• Area 

• Directional 

• Object   - what are the differences? 
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Elementary theory 

• Light-surface interaction 

• Reflection 

• Refraction 

– Snell’s law 

• Surface normal 

vector 

 

 

• Real world is a bit different 
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Surface types 

• Reflective 

• Diffuse – Lambertian 

• Both 
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Light reflection distribution 

             Mirror                          Matte 

 

 

 

 

directional        indirectional 

component        component 

18 



Lighting models 

• Empiric – e.g. Phong lighting model 

– cheap computation 

– physically incorrect 

– visually plausible  

 

• Physically-based 

– energy transfer, light propagation 

– closer to real-world physics 

– expensive 
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Local illumination models  

• Fast but inaccurate 

• Ignore other objects (i.e. it’s not global) 

• Empirical (no physical background) 

• Many physical effects are impossible to 

achieve 

 

• Computer games, real-time rendering 
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Diffuse light 
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Ambient light 
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Diffuse + ambient 
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Diffuse + ambient + specular 
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Phong lighting model 

• Ambient + Diffuse + Specular components 

 

 

 

 

 

 

• Simulates global light scattered in the scene 

and reflected from other objects 
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without ambient with ambient 



Phong lighting model 

• Ambient + Diffuse + Specular components 

 

 

 

 

 

 

• Lambert law 
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Phong lighting model 

• Ambient + Diffuse + Specular components 

• Directional 

– view vector 
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Specular component 

 

 

 

 

 

 

• r.v = |r|.|v|.cos(rv) 

• absolute parameter ks 

• exponential parameter shininess (gloss) 
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Phong lighting model 

 

 

 

• k, I coefficients can depend on wavelength 

 

• what defines surface lighting properties? 

– ka, kd, ks, kshine 
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Other lighting models 

• Blinn-Phong 

– generalization of Phong’s model 

• Cook-Torrance 

– microfacets 

• Oren-Nayar 

– rough surfaces 

• Anisotropic microfacet distribution 
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Surface normal vector 

• Perpendicular to the surface at the point 

• Computation: 

– Usually from tangent vectors 

– Vector product 

– Depends on the 

object representation 

 

• Vector 

normalization 
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Tangent vectors 

• Parametric representation 
• X = x(u,v) 

• Y = y(u,v) 

• Z = z(u,v) 

– Partial derivation by u,v → vectors tu, tu 

 

• Polygonal representation 

– Tangent vectors are edge vectors 

– Mind the orientation! 
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Lighting a polygon 

• Scanline rasterization 

• For each pixel – evaluate lighting model 

– compute normal vector, view vector, light vector 

– get surface parameters 

– evaluate formula 

 

• Expensive 

– therefore: shading 
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Shading 



Shading 

• Object color is altered to give impression 

of light and depth 

 

 

 

 

 

• Usually incorporates lighting 

• Often only an approximation of real physics 

35 



Two stages of lighting 

1. Evaluate illumination for some points of the 

object 

= LIGHTING 

 

 

2. Use results from (1) to compute illumination 

of the rest of the object 

= SHADING 
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Flat shading 

• One normal 

per face 

 

• Entire face =  

one color 
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Flat (constant) shading 

• 1 normal vector per object face (polygon) 

• 1 lighting value per object face 

• Entire polygon = 1 color 
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Gouraud shading 

• Per-vertex 

lighting 

 

• Color is 

interpolated over 

the face 
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Gouraud shading 

• 1 normal vector per 1 surface vertex  

– i.e. 4 lighting values / quad, 3 values / triangle 

• Rest of the polygon – lighting value 

interpolation 

• Bands 

• Chance of  

missing 

specular 

• Realtime 
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Example 

• A[0, 0]  = 80% intensity 

• B[10, 6] = 20% 

• C[10, 9] = 80% 

• D[0, 10] = 40% 

 

• Interpolate light intensity at S[5, 8] 

• HINT: Bilinear interpolation 

A…D => P  B…C => Q  P…Q => S 
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Phong shading 

• NOT Phong lighting model 

• Entire surface normal is interpolated instead 

of interpolating only the lighting value 

• Per 

pixel 

lighting 

 

• Slower 

42 



Towards photorealism 



Real world effects 

• light refraction 

• mutual object reflection 

• caustics 

• chromatic aberration 

• color bleeding 

• (soft) shadows 
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http://math.hws.edu/eck 

http://graphics.ucsd.edu/~henrik/ 



Refraction, caustics 
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Reflections 
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Chromatic aberration 
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Color bleeding 
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http://feeblemind.org/blog/ 



Raytracing 
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Raytracing 

• Tracing a beam from viewer’s eye through 

each screen pixel.  

• Find first beam intersection with objects 

• Compute local lighting 

• Trace reflected and refracted beams 

• Combine the results with local result 
• recursively 
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Raytracing – what’s inside 

• Line-object intersection 

– expensive computation 

– speed-up by e.g. scene subdivision (octree) or 

bounding volumes 

– take the nearest 

intersection 

 

• Example intersections: 

– Sphere 

– Triangle 
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Line-sphere intersection 

• Line A,p : L = P + t * p 

• Sphere C,r : (S – C)2 = R2 

• Intersect: ( P + t * p – C )2 = R2  

– Quadratic equation 

– 0,1,2 roots 
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Line-triangle intersection 

• Line P,p : L = P + t * p 

• Triangle K,L,M: T = K + u*(L-K) + v*(M-K) 

• Line-plane intersection 

– Plane: ax + by + cx + d = 0 

• Check if intersection is inside triangle 
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Raytracing – what’s inside 

• Compute reflected 

and refracted rays 

– evaluate light coming  

from their direction 

 

• Combine with the local  

lighting result 
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Let’s think the combinations 
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Raytracing – pros and cons 

• No need for polygonal representation 

– works with both volume and boundary rep. 

– works with CSG objects, F-reps, meshes... 

• No explicit rasterization takes place 

 

 

• Computationally expensive 

• Does not compute soft shadows 
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Examples: POVRAY 
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http://hof.povray.org/ 



Radiosity 

• Object hit by light is a new light source 

• Energy (light) exchange between objects 

• Indirect illumination 
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http://www.bxhdesigns.com/ 



Real world radiosity 

• Light reflectors in 

photography 
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http://www.hootphotography.com 



Radiosity 

• Physically based 

• Object hit by light becomes  

a new light source 

• Not only object-light 

interaction 

• But also object-object 

light interaction 

• Energy exchange 

between objects 
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http://www.ehow.com/video_4938383.html 



General situation 
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The math behind it 

• Energy is either emitted (E) or bounced (B) 

• All reflections are perfectly diffuse 

• Surface Ai radiosity: 

 

 

• Form factors Fij 

– how two surface 

elements Ai and Aj 
affect each other 
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Elementary example 

• Problem: 

 

B1 = ? 

 

B2 = ? 

 

• Let E1=E2=0 
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Energy preservation 

• Bounced = Emitted + p*Received 

 

 

 

 

 

 

• Repeat for all 3 surfaces 
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Result = linear system 

 

 

 

 

• E1 = E2 = 0 

• E0 = light source parameter 

 

• In real – tens of thousands of surfaces 
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Radiosity pros and cons 

• Physically correct 

• Extreme computational expenses 

• Indirect light 

– soft realistic shadows 

• Area lights and object lights are easy to do 

• Color bleeding possible too 

• Only diffuse light transfer = Problems with 

reflections and specular light 
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Example 

• Indirect light 

• Color bleeding 

• Soft shadows 

• Area light 
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Radiosity example 

 

 

 

 

 

 

 

 

         direct illumination indirect illumination 
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Raytracing vs. radiosity 
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http://www.soe.ucsc.edu/classes/cmps161/Winter04/projects/aames/index.htm 



Questions? 


