
Recollection

• Models → Pixels

• Model transformation

• Viewport transformation

• Clipping

• Rasterization

• Texturing

• + Lights & shadows

– Can be computed in different stages

1

So far we came to…

Geometry model

3

Surface color

4

Now: Shading

5

Important

recollections

Bilinear interpolation

7

A

B

D

C

P Q X

Bilinear interpolation

• 4 corner points A,B,C,D with known values

• 1 internal point X with unknown value

• P = A + u.(B-A), Q = D + u.(C-D)

• X = P + v.(Q-P)

• Matrix representation

8

  1,0,1,0
1

,1 






 








 vu

v

v

CB

DA
uuX

Application: texture mapping

• Interpolate D↔A = P, D↔C = Q, P↔Q = X

9

P

Q

P

Q

Application: texture filtering

• Consider 4 neighboring texels

• Weighted average

10

Lighting and shading

General problem

• For a point in space, calculate lighting

conditions and modulate the inherent object

color to produce final pixel color

12

Lighting and shading

• What is lighting

– Computing amount of radiance (per wavelength)

reflected from object towards the camera

• What is shading

– Creating illusion of space in planar images

– Usually uses lighting but other options are

available too – e.g. depth shading

13

Lighting

Light source types

• Omnidirectional

• Spotlight

• Area

• Directional

• Object - what are the differences?

15

Elementary theory

• Light-surface interaction

• Reflection

• Refraction

– Snell’s law

• Surface normal

vector

• Real world is a bit different

16

Surface types

• Reflective

• Diffuse – Lambertian

• Both

17

Light reflection distribution

 Mirror Matte

directional indirectional

component component

18

Lighting models

• Empiric – e.g. Phong lighting model

– cheap computation

– physically incorrect

– visually plausible

• Physically-based

– energy transfer, light propagation

– closer to real-world physics

– expensive

19

Local illumination models

• Fast but inaccurate

• Ignore other objects (i.e. it’s not global)

• Empirical (no physical background)

• Many physical effects are impossible to

achieve

• Computer games, real-time rendering

20

Diffuse light

21

Ambient light

22

Diffuse + ambient

23

Diffuse + ambient + specular

24

Phong lighting model

• Ambient + Diffuse + Specular components

• Simulates global light scattered in the scene

and reflected from other objects

25

without ambient with ambient

Phong lighting model

• Ambient + Diffuse + Specular components

• Lambert law

26

lnId




ambient + diffuse ambient + diffuse + specular

Phong lighting model

• Ambient + Diffuse + Specular components

• Directional

– view vector

 27

  shinek

s vrI



Specular component

• r.v = |r|.|v|.cos(rv)

• absolute parameter ks

• exponential parameter shininess (gloss)

28

Phong lighting model

• k, I coefficients can depend on wavelength

• what defines surface lighting properties?

– ka, kd, ks, kshine

29

 



lights

ssddaa IkIkIkI

Other lighting models

• Blinn-Phong

– generalization of Phong’s model

• Cook-Torrance

– microfacets

• Oren-Nayar

– rough surfaces

• Anisotropic microfacet distribution

30

Surface normal vector

• Perpendicular to the surface at the point

• Computation:

– Usually from tangent vectors

– Vector product

– Depends on the

object representation

• Vector

normalization

31

u
v

n


vun




n

n
n 



ˆ

Tangent vectors

• Parametric representation
• X = x(u,v)

• Y = y(u,v)

• Z = z(u,v)

– Partial derivation by u,v → vectors tu, tu

• Polygonal representation

– Tangent vectors are edge vectors

– Mind the orientation!

32

Lighting a polygon

• Scanline rasterization

• For each pixel – evaluate lighting model

– compute normal vector, view vector, light vector

– get surface parameters

– evaluate formula

• Expensive

– therefore: shading

33

Shading

Shading

• Object color is altered to give impression

of light and depth

• Usually incorporates lighting

• Often only an approximation of real physics

35

Two stages of lighting

1. Evaluate illumination for some points of the

object

= LIGHTING

2. Use results from (1) to compute illumination

of the rest of the object

= SHADING

36

Flat shading

• One normal

per face

• Entire face =

one color

37

Flat (constant) shading

• 1 normal vector per object face (polygon)

• 1 lighting value per object face

• Entire polygon = 1 color

38

Gouraud shading

• Per-vertex

lighting

• Color is

interpolated over

the face

39

Gouraud shading

• 1 normal vector per 1 surface vertex

– i.e. 4 lighting values / quad, 3 values / triangle

• Rest of the polygon – lighting value

interpolation

• Bands

• Chance of

missing

specular

• Realtime

40

Example

• A[0, 0] = 80% intensity

• B[10, 6] = 20%

• C[10, 9] = 80%

• D[0, 10] = 40%

• Interpolate light intensity at S[5, 8]

• HINT: Bilinear interpolation

A…D => P B…C => Q P…Q => S

41

Phong shading

• NOT Phong lighting model

• Entire surface normal is interpolated instead

of interpolating only the lighting value

• Per

pixel

lighting

• Slower

42

Towards photorealism

Real world effects

• light refraction

• mutual object reflection

• caustics

• chromatic aberration

• color bleeding

• (soft) shadows

44

http://math.hws.edu/eck

http://graphics.ucsd.edu/~henrik/

Refraction, caustics

45

Reflections

46

Chromatic aberration

47

Color bleeding

48

http://feeblemind.org/blog/

Raytracing

49

Raytracing

• Tracing a beam from viewer’s eye through

each screen pixel.

• Find first beam intersection with objects

• Compute local lighting

• Trace reflected and refracted beams

• Combine the results with local result
• recursively

50

Raytracing – what’s inside

• Line-object intersection

– expensive computation

– speed-up by e.g. scene subdivision (octree) or

bounding volumes

– take the nearest

intersection

• Example intersections:

– Sphere

– Triangle

51

Line-sphere intersection

• Line A,p : L = P + t * p

• Sphere C,r : (S – C)2 = R2

• Intersect: (P + t * p – C)2 = R2

– Quadratic equation

– 0,1,2 roots

52

Line-triangle intersection

• Line P,p : L = P + t * p

• Triangle K,L,M: T = K + u*(L-K) + v*(M-K)

• Line-plane intersection

– Plane: ax + by + cx + d = 0

• Check if intersection is inside triangle

53

Raytracing – what’s inside

• Compute reflected

and refracted rays

– evaluate light coming

from their direction

• Combine with the local

lighting result

54

).,.,.(TRL CtCrClcombC 

Let’s think the combinations

55

).,.,.(TRL CtCrClcombC 

Raytracing – pros and cons

• No need for polygonal representation

– works with both volume and boundary rep.

– works with CSG objects, F-reps, meshes...

• No explicit rasterization takes place

• Computationally expensive

• Does not compute soft shadows

56

Examples: POVRAY

57

http://hof.povray.org/

Radiosity

• Object hit by light is a new light source

• Energy (light) exchange between objects

• Indirect illumination

58

http://www.bxhdesigns.com/

Real world radiosity

• Light reflectors in

photography

59

http://www.hootphotography.com

Radiosity

• Physically based

• Object hit by light becomes

a new light source

• Not only object-light

interaction

• But also object-object

light interaction

• Energy exchange

between objects

60

http://www.ehow.com/video_4938383.html

General situation

61

The math behind it

• Energy is either emitted (E) or bounced (B)

• All reflections are perfectly diffuse

• Surface Ai radiosity:

• Form factors Fij

– how two surface

elements Ai and Aj
affect each other

62

ij

A

jiii FBpEB
j






Elementary example

• Problem:

B1 = ?

B2 = ?

• Let E1=E2=0

63

Energy preservation

• Bounced = Emitted + p*Received

• Repeat for all 3 surfaces

64

)(122111010111 FBFBFBpEB 

112211101011)(EFBFBFBpB 

1122111110101)1(EFBpFpBFBp 

Result = linear system

• E1 = E2 = 0

• E0 = light source parameter

• In real – tens of thousands of surfaces

65
























































2

1

0

2

1

0

222212202

121111101

020010000

1

1

1

E

E

E

B

B

B

FpFpFp

FpFpFp

FpFpFp

Radiosity pros and cons

• Physically correct

• Extreme computational expenses

• Indirect light

– soft realistic shadows

• Area lights and object lights are easy to do

• Color bleeding possible too

• Only diffuse light transfer = Problems with

reflections and specular light

66

Example

• Indirect light

• Color bleeding

• Soft shadows

• Area light

67

Radiosity example

 direct illumination indirect illumination

68

Raytracing vs. radiosity

69

http://www.soe.ucsc.edu/classes/cmps161/Winter04/projects/aames/index.htm

Questions?

