
Lagrange & Newton interpolation

In this section, we shall study the polynomial interpolation in the form of Lagrange and Newton. Given a se-
quence of (n +1) data points and a function f, the aim is to determine an n-th degree polynomial which interpol-
ates f at these points. We shall resort to the notion of divided differences.

Interpolation

Given (n+1) points {(x0, y0), (x1, y1), …, (xn, yn)}, the points defined by (xi)0≤i≤n are called points of
interpolation. The points defined by (yi)0≤i≤n are the values of interpolation. To interpolate a function
f, the values of interpolation are defined as follows:

yi = f(xi), i = 0, …, n.

Lagrange interpolation polynomial

The purpose here is to determine the unique polynomial of degree n, Pn which verifies

Pn(xi) = f(xi), i = 0, …, n.

The polynomial which meets this equality is Lagrange interpolation polynomial

Pnx =∑
j=0

n

l jx f x j

where the lj ’s are polynomials of degree n forming a basis of Pn

l jx = ∏
i=0, i≠ j

n x−x i

x j−xi

=
x−x0

x j−x0

⋯
x−x j−1

x j−x j−1

x−x j1

x j−x j1

⋯
x−xn

x j−xn

Properties of Lagrange interpolation polynomial and Lagrange basis

They are the lj polynomials which verify the following property:

l jxi= ji={1 i= j
0 i≠ j

, ∀ i=0,... , n.

They form a basis of the vector space Pn of polynomials of degree at most equal to n

∑
j=0

n

 j l jx=0

By setting: x = xi, we obtain:

∑
j=0

n

 j l jxi=∑
j=0

n

 j ji=0 ⇒ i=0

The set (lj)0≤j≤n is linearly independent and consists of n + 1 vectors. It is thus a basis of Pn.
Finally, we can easily see that:

Pnx i=∑
j=0

n

l jx i f xi=∑
j=0

n

 ji f x i=f xi

Example: computing Lagrange interpolation polynomials

Given a set of three data points {(0, 1), (2, 5), (4, 17)}, we shall determine the Lagrange interpolation
polynomial of degree 2 which passes through these points.

First, we compute l0, l1 and l2:

l0x=
x−2x−4

8
, l1x =−

x x−4
4

, l2x=
x x−2

8

Lagrange interpolation polynomial is:

Pn = l0(x) + 5l1(x) + 17l2(x) = 1 + x2

Scilab: computing Lagrange interpolation polynomial

The Scilab function lagrange.sci determines Lagrange interpolation polynomial. X encompasses the
points of interpolation and Y the values of interpolation. P is the Lagrange interpolation polynomial.

lagrange.sci

function[P]=lagrange(X,Y) //X nodes,Y values;P is the numerical Lagrange
polynomial interpolation
n=length(X); // n is the number of nodes. (n-1) is the degree
x=poly(0,"x");P=0;
for i=1:n, L=1;
 for j=[1:i-1,i+1:n] L=L*(x-X(j))/(X(i)-X(j));end
 P=P+L*Y(i);
end
endfunction

-->X=[0;2;4]; Y=[1;5;17]; P=lagrange(X,Y)
 P = 1 + x^2

Such polynomials are not convenient, since numerically, it is difficult to deduce lj+1 from lj. For this
reason, we introduce Newton’s interpolation polynomial.

Newton’s interpolation polynomial and Newton’s basis properties

The polynomials of Newton’s basis, ej, are defined by:

e jx =∏
i=0

j−1

 x−x i= x−x0x−x1⋯ x−x j−1 , j=1, ..., n.

with the following convention:

e0=1

Moreover

e1 = (x – x0)
e2 = (x – x0)(x – x1)
e3 = (x – x0)(x – x1)(x – x2)
⋮

en = (x – x0)(x – x1)⋯(x – xn-1)

The set of polynomials (ej)0≤j≤n (Newton’s basis) are a basis of Pn, the space of polynomials of degree
at most equal to n. Indeed, they constitute an echelon-degree set of (n + 1) polynomials.

Newton’s interpolation polynomial of degree n related to the subdivision {(x0, y0), (x1, y1), …, (xn, yn)}
is:

Pnx =∑
j=0

n

 j e jx =01x−x02x−x0x−x1nx−x0x−x1⋯x−xn−1

where

Pn(xi) = f(xi), i = 0, …, n.

We shall see how to determine the coefficients (j)0≤j≤n in the following section entitled the divided
differences.

Divided differences

Newton’s interpolation polynomial of degree n, Pn(x), evaluated at x0, gives:

Pnx0=∑
j=0

n

 j e jx0=0= f x0=f [x0]

Generally speaking, we write:

f[xi] = f(xi), i = 0, …, n

f[x0] is called a zero-order divided difference.

Newton’s interpolation polynomial of degree n, Pn(x), evaluated at x1, gives:

Pnx1=∑
j=0

n

 j e jx1=01x1−x0= f [x0]1x1−x0=f [x1]

Hence

1=
f [x1]−f [x0]

x1−x0

=f [x0 , x1]

f[x1,x0] is called 1st -order divided difference.

Newton’s interpolation polynomial of degree n, Pn(x), evaluated at x2, gives:

Pnx2 = ∑
j=0

n

 j e jx2

= 01x2− x02x2−x0x2−x1

= f [x0]f [x0 , x1] x2−x02x2−x0x2− x1

= f [x2]

Therefore:

2x2−x0x2−x1 = f [x2]−f [x0]−f [x0 , x1]x2−x0

2 =
f [x2]−f [x0]−f [x0 , x1]x2−x0

x2−x0x2−x1

2 =
f [x2]−f [x0]

x2−x0x2−x1
−

f [x0 , x1]

x2−x1

2 =
f [x0 , x2]−f [x0 , x1]

x2−x1

The following form is generally preferred:

2x2−x0x2−x1 = f [x2]−f [x0]−f [x0 , x1]x2−x0

2x2−x0x2−x1 = f [x2]−f [x0]−f [x0 , x1]x2−x0− f [x1]f [x1]

2x2−x0x2−x1 = f [x2]−f [x1] f [x1]−f [x0]−f [x0 , x1] x2−x0

2x2−x0x2−x1 = f [x2]−f [x1]x1−x0f [x0 , x1]−f [x0 , x1] x2−x0

2x2−x0x2−x1 = f [x2]−f [x1]x1−x2 f [x0 , x1]

2x2−x0 =
f [x2]− f [x1]

x2−x1

−f [x0 , x1]

2x2−x0 = f [x1, x2]−f [x0 , x1]

Hence

2=
f [x1 , x2]−f [x0 , x1]

x2− x0

=f [x0 , x1 , x2]

f[x0, x1, x2] is called 2nd-order divided difference. By recurrence, we obtain:

k=
f [x1 ,, xk]−f [x0 ,, xk−1]

xk−x0

=f [x0 ,, xk]

f[x0, …, xk] is thus called a kth-order divided difference. In practice, when we want to determine the
3rd-order divided difference f[x0, x1, x2, x3] for instance, we need the following quantities

x0 f [x0]

x1 f [x1] f [x0 , x1]

x2 f [x2] f [x1 , x2] f [x0 , x1, x2]

x3 f [x3] f [x2 , x3] f [x1 , x2 , x3] f [x0 , x1, x2, x3]

Hence

f [x0 , x1 , x2 , x3]=
f [x1, x2, x3]−f [x0, x1 , x2]

x3−x0

Properties. Let E = {0, 1, …, n} and be a permutation of G(E). Then

f[x(0), ..., x(n)] = f[x0, …, xn]

Newton’s interpolation polynomial of degree n

Newton’s interpolation polynomial of degree n is obtained via the successive divided differences:

Pnx =f [x0]∑
j=1

n

f [x0 ,... , x j]e jx

An example of computing Newton’s interpolation polynomial

Given a set of 3 data points {(0, 1), (2, 5), (4, 17)}, we shall determine Newton’s interpolation polyno-
mial of degree 2 which passes through these points.

x0=0 f [x0]=1

x1=2 f [x1]=5 f [x0 , x1]=
5−1
2−0

=2

x2=4 f [x2]=17 f [x1 , x2]=
17−5
4−2

=6 f [x0 , x1 , x2]=
6−2
4−0

=1

Consequently:

P2(x) = f[x0] + f[x0, x1]x + f[x0, x1, x2]x(x – 2) = 1 + 2x + x(x – 2) = 1 + x2

Scilab: computing Newton’s interpolation polynomial

Scilab function newton.sci determines Newton’s interpolation polynomial. X contains the points of
interpolation and Y the values of interpolation. P is Newton’s interpolation polynomial computed by
means of divided differences.

newton.sci

function[P]=newton(X,Y) //X nodes,Y values;P is the numerical
Newton polynomial
n=length(X); // n is the number of nodes. (n-1) is the degree
for j=2:n,
 for i=1:n-j+1,Y(i,j)=(Y(i+1,j-1)-Y(i,j-1))/(X(i+j-1)-X(i));end,
end,
x=poly(0,"x");
P=Y(1,n);
for i=2:n, P=P*(x-X(i))+Y(i,n-i+1); end
endfunction;

Therefore, we obtain:
-->X=[0;2;4]; Y=[1;5;17]; P=newton(X,Y)
 P = 1 + x^2

	Lagrange & Newton interpolation
	Interpolation
	Lagrange interpolation polynomial
	Properties of Lagrange interpolation polynomial and Lagrange basis
	Example: computing Lagrange interpolation polynomials
	Scilab: computing Lagrange interpolation polynomial
	Newton’s interpolation polynomial and Newton’s basis properties
	Divided differences
	Newton’s interpolation polynomial of degree n
	An example of computing Newton’s interpolation polynomial
	Scilab: computing Newton’s interpolation polynomial

