Lagrange \& Newton interpolation

In this section, we shall study the polynomial interpolation in the form of Lagrange and Newton. Given a sequence of $(n+1)$ data points and a function f, the aim is to determine an n-th degree polynomial which interpolates f at these points. We shall resort to the notion of divided differences.

Interpolation

Given $(n+1)$ points $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, the points defined by $\left(x_{i}\right)_{0 \leq i \leq n}$ are called points of interpolation. The points defined by $\left(y_{i}\right)_{0 \leq i \leq n}$ are the values of interpolation. To interpolate a function f, the values of interpolation are defined as follows:

$$
y_{i}=f\left(x_{i}\right), \quad \forall i=0, \ldots, n
$$

Lagrange interpolation polynomial

The purpose here is to determine the unique polynomial of degree n, P_{n} which verifies

$$
P_{n}\left(x_{i}\right)=f\left(x_{i}\right), \quad \forall i=0, \ldots, n
$$

The polynomial which meets this equality is Lagrange interpolation polynomial

$$
P_{n}(x)=\sum_{j=0}^{n} l_{j}(x) f\left(x_{j}\right)
$$

where the l_{j} 's are polynomials of degree n forming a basis of P_{n}

$$
l_{j}(x)=\prod_{i=0, i \neq j}^{n} \frac{x-x_{i}}{x_{j}-x_{i}}=\frac{x-x_{0}}{x_{j}-x_{0}} \cdots \frac{x-x_{j-1}}{x_{j}-x_{j-1}} \frac{x-x_{j+1}}{x_{j}-x_{j+1}} \cdots \frac{x-x_{n}}{x_{j}-x_{n}}
$$

Properties of Lagrange interpolation polynomial and Lagrange basis

They are the l_{j} polynomials which verify the following property:

$$
l_{j}\left(x_{i}\right)=\delta_{j i}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array}, \quad \forall i=0, \ldots, n\right.
$$

They form a basis of the vector space P_{n} of polynomials of degree at most equal to n

$$
\sum_{j=0}^{n} \alpha_{j} l_{j}(x)=0
$$

By setting: $x=x_{i}$, we obtain:

$$
\sum_{j=.}^{n} \alpha_{j} l_{j}\left(x_{i}\right)=\sum_{j=.}^{n} \alpha_{j} \delta_{j i}=\cdot \Rightarrow \alpha_{i}=.
$$

The set $\left(l_{j}\right)_{0 \leq j \leq n}$ is linearly independent and consists of $n+1$ vectors. It is thus a basis of P_{n}.
Finally, we can easily see that:

$$
P_{n}\left(x_{i}\right)=\sum_{j=.}^{n} l_{j}\left(x_{i}\right) f\left(x_{i}\right)=\sum_{j=.}^{n} \delta_{j i} f\left(x_{i}\right)=f\left(x_{i}\right)
$$

Example: computing Lagrange interpolation polynomials

Given a set of three data points $\{(0,1),(2,5),(4,17)\}$, we shall determine the Lagrange interpolation polynomial of degree 2 which passes through these points.
First, we compute l_{0}, l_{1} and l_{2} :

$$
l_{0}(x)=\frac{(x-2)(x-4)}{8}, l_{1}(x)=-\frac{x(x-4)}{4}, l_{2}(x)=\frac{x(x-2)}{8}
$$

Lagrange interpolation polynomial is:

$$
P_{n}=l_{0}(x)+5 l_{1}(x)+17 l_{2}(x)=1+x^{2}
$$

Scilab: computing Lagrange interpolation polynomial

The Scilab function lagrange.sci determines Lagrange interpolation polynomial. X encompasses the points of interpolation and Y the values of interpolation. P is the Lagrange interpolation polynomial.

lagrange.sci

```
function[P]=lagrange(X,Y) //X nodes,Y values;P is the numerical Lagrange
polynomial interpolation
n=length(X); // n is the number of nodes. (n-1) is the degree
x=poly(0,"x");P=0;
for i=1:n, L=1;
    for j=[1:i-1,i+1:n] L=L*(x-X(j))/(X(i)-X(j));end
    P=P+L*Y(i);
end
endfunction
```

$-->X=[0 ; 2 ; 4] ; Y=[1 ; 5 ; 17] ; P=$ lagrange($\mathrm{X}, \mathrm{Y})$
$P=1+x^{\wedge} 2$

Such polynomials are not convenient, since numerically, it is difficult to deduce l_{j+1} from l_{j}. For this reason, we introduce Newton's interpolation polynomial.

Newton's interpolation polynomial and Newton's basis properties

The polynomials of Newton's basis, e_{j}, are defined by:

$$
e_{j}(x)=\prod_{i=0}^{j-1}\left(x-x_{i}\right)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{j-1}\right), \quad j=1, \ldots, n .
$$

with the following convention:

$$
e_{0}=1
$$

Moreover

$$
\begin{aligned}
& e_{1}=\left(x-x_{0}\right) \\
& e_{2}=\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& e_{3}=\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \\
& \vdots \\
& e_{n}=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

The set of polynomials $\left(e_{j}\right)_{0 \leq j \leq n}$ (Newton's basis) are a basis of P_{n}, the space of polynomials of degree at most equal to n. Indeed, they constitute an echelon-degree set of $(n+1)$ polynomials.

Newton's interpolation polynomial of degree n related to the subdivision $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$ is:

$$
P_{n}(x)=\sum_{j=0}^{n} \alpha_{j} e_{j}(x)=\alpha_{0}+\alpha_{1}\left(x-x_{0}\right)+\alpha_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\ldots+\alpha_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
$$

where

$$
P_{n}\left(x_{i}\right)=f\left(x_{i}\right), \quad \forall i=0, \ldots, n .
$$

We shall see how to determine the coefficients $\left(\alpha_{j}\right)_{0 \leq j \leq n}$ in the following section entitled the divided differences.

Divided differences

Newton's interpolation polynomial of degree $n, P_{n}(x)$, evaluated at x_{0}, gives:

$$
P_{n}\left(x_{0}\right)=\sum_{j=0}^{n} \alpha_{j} e_{j}\left(x_{0}\right)=\alpha_{0}=f\left(x_{0}\right)=f\left[x_{0}\right]
$$

Generally speaking, we write:

$$
f\left[x_{i}\right]=f\left(x_{i}\right), \forall i=0, \ldots, n
$$

$f\left[x_{0}\right]$ is called a zero-order divided difference.
Newton's interpolation polynomial of degree $n, P_{n}(x)$, evaluated at x_{1}, gives:

$$
P_{n}\left(x_{1}\right)=\sum_{j=0}^{n} \alpha_{j} e_{j}\left(x_{1}\right)=\alpha_{0}+\alpha_{1}\left(x_{1}-x_{0}\right)=f\left[x_{0}\right]+\alpha_{1}\left(x_{1}-x_{0}\right)=f\left[x_{1}\right]
$$

Hence

$$
\alpha_{1}=\frac{f\left[x_{1}\right]-f\left[x_{0}\right]}{x_{1}-x_{0}}=f\left[x_{0}, x_{1}\right]
$$

$f\left[x_{1}, x_{0}\right]$ is called $1^{\text {st }}$-order divided difference.
Newton's interpolation polynomial of degree $n, P_{n}(x)$, evaluated at x_{2}, gives:

$$
\begin{aligned}
P_{n}\left(x_{2}\right) & =\sum_{j=0}^{n} \alpha_{j} e_{j}\left(x_{2}\right) \\
& =\alpha_{0}+\alpha_{1}\left(x_{2}-x_{0}\right)+\alpha_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) \\
& =f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x_{2}-x_{0}\right)+\alpha_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) \\
& =f\left[x_{2}\right]
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\alpha_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) & =f\left[x_{2}\right]-f\left[x_{0}\right]-f\left[x_{0}, x_{1}\right]\left(x_{2}-x_{0}\right) \\
\alpha_{2} & =\frac{f\left[x_{2}\right]-f\left[x_{0}\right]-f\left[x_{0}, x_{1}\right]\left(x_{2}-x_{0}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} \\
\alpha_{2} & =\frac{f\left[x_{2}\right]-f\left[x_{0}\right]}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}-\frac{f\left[x_{0}, x_{1}\right]}{x_{2}-x_{1}} \\
\alpha_{2} & =\frac{f\left[x_{0}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{1}}
\end{aligned}
$$

The following form is generally preferred:

$$
\begin{aligned}
& \alpha_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)=f\left[x_{2}\right]-f\left[x_{0}\right]-f\left[x_{0}, x_{1}\right]\left(x_{2}-x_{0}\right) \\
& \alpha_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)=f\left[x_{2}\right]-f\left[x_{0}\right]-f\left[x_{0}, x_{1}\right]\left(x_{2}-x_{0}\right)-f\left[x_{1}\right]+f\left[x_{1}\right] \\
& \alpha_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)=f\left[x_{2}\right]-f\left[x_{1}\right]+f\left[x_{1}\right]-f\left[x_{0}\right]-f\left[x_{0}, x_{1}\right]\left(x_{2}-x_{0}\right) \\
& \alpha_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)=f\left[x_{2}\right]-f\left[x_{1}\right]+\left(x_{1}-x_{0}\right) f\left[x_{0}, x_{1}\right]-f\left[x_{0}, x_{1}\right]\left(x_{2}-x_{0}\right) \\
& \alpha_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)=f\left[x_{2}\right]-f\left[x_{1}\right]+\left(x_{1}-x_{2}\right) f\left[x_{0}, x_{1}\right] \\
& \alpha_{2}\left(x_{2}-x_{0}\right) \\
& \alpha_{2}\left(x_{2}-x_{0}\right)
\end{aligned}=\frac{f\left[x_{2}\right]-f\left[x_{1}\right]}{x_{2}-x_{1}}-f\left[x_{0}, x_{1}\right] \quad=f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right] .
$$

Hence

$$
\alpha_{2}=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=f\left[x_{0}, x_{1}, x_{2}\right]
$$

$f\left[x_{0}, x_{1}, x_{2}\right]$ is called $2^{\text {nd }}$-order divided difference. By recurrence, we obtain:

$$
\alpha_{k}=\frac{f\left[x_{1}, \ldots, x_{k}\right]-f\left[x_{0}, \ldots, x_{k-1}\right]}{x_{k}-x_{0}}=f\left[x_{0}, \ldots, x_{k}\right]
$$

$f\left[x_{0}, \ldots, x_{k}\right]$ is thus called a $k^{\text {th }}$-order divided difference. In practice, when we want to determine the $3^{\text {rd }}$-order divided difference $f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ for instance, we need the following quantities

$$
\begin{array}{llll}
x_{0} & f\left[x_{0}\right] & & \\
x_{1} & f\left[x_{1}\right] & f\left[x_{0}, x_{1}\right] & \\
x_{2} & f\left[x_{2}\right] & f\left[x_{1}, x_{2}\right] & f\left[x_{0}, x_{1}, x_{2}\right] \\
x_{3} & f\left[x_{3}\right] & f\left[x_{2}, x_{3}\right] & f\left[x_{1}, x_{2}, x_{3}\right]
\end{array} f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]
$$

Hence

$$
f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=\frac{f\left[x_{1}, x_{2}, x_{3}\right]-f\left[x_{0}, x_{1}, x_{2}\right]}{x_{3}-x_{0}}
$$

Properties. Let $E=\{0,1, \ldots, n\}$ and σ be a permutation of $\mathcal{G}(E)$. Then

$$
f\left[x_{\sigma(0)}, \ldots, x_{\sigma(n)}\right]=\mathrm{f}\left[x_{0}, \ldots, x_{n}\right]
$$

Newton's interpolation polynomial of degree \boldsymbol{n}

Newton's interpolation polynomial of degree n is obtained via the successive divided differences:

$$
P_{n}(x)=f\left[x_{0}\right]+\sum_{j=1}^{n} f\left[x_{0}, \ldots, x_{j}\right] e_{j}(x)
$$

An example of computing Newton's interpolation polynomial

Given a set of 3 data points $\{(0,1),(2,5),(4,17)\}$, we shall determine Newton's interpolation polynomial of degree 2 which passes through these points.

$$
\begin{array}{lll}
x_{0}=0 & f\left[x_{0}\right]=1 & \\
x_{1}=2 & f\left[x_{1}\right]=5 & f\left[x_{0}, x_{1}\right]=\frac{5-1}{2-0}=2 \\
x_{2}=4 & f\left[x_{2}\right]=17 & f\left[x_{1}, x_{2}\right]=\frac{17-5}{4-2}=6
\end{array} \quad f\left[x_{0}, x_{1}, x_{2}\right]=\frac{6-2}{4-0}=1 ~ l
$$

Consequently:

$$
P_{2}(x)=f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right] x+f\left[x_{0}, x_{1}, x_{2}\right] x(x-2)=1+2 x+x(x-2)=1+x^{2}
$$

Scilab: computing Newton's interpolation polynomial

Scilab function newton. sci determines Newton's interpolation polynomial. X contains the points of interpolation and Y the values of interpolation. P is Newton's interpolation polynomial computed by means of divided differences.
newton.sci
function $[\mathrm{P}]=$ newton(X, Y) //X nodes, Y values; P is the numerical
Newton polynomial
$\mathrm{n}=$ length (X); // n is the number of nodes. ($\mathrm{n}-1$) is the degree for $j=2: n$,
for $i=1: n-j+1, Y(i, j)=(Y(i+1, j-1)-Y(i, j-1)) /(X(i+j-1)-X(i)) ; e n d$,
end,
x=poly(0,"x");
$\mathrm{P}=\mathrm{Y}(1, \mathrm{n})$;
for $i=2: n, P=P *(x-X(i))+Y(i, n-i+1)$; end endfunction;

Therefore, we obtain:

```
-->X=[0;2;4]; Y=[1;5;17]; P=newton(X,Y)
    P}=1+\mp@subsup{x}{}{\wedge}
```

