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Abstract

The scope of the hereby presented dissertation project is the effective information visualiza-
tion of large data. This thesis declares the aims and goals of the project along with documenting
the previous work on this topic. Several original results, which have already been published, are

presented as well.

In its early stages the project investigates the issues introduced to an information visualiza-
tion environment by the increase of the respective data volume. These are either bottlenecks
inside the visualization pipeline handled by the computer or perception issues within the human

visual system on the side of the observer. Both of these aspects are considered.

After a successful identification of the key impact of large data on visualization, the project
employs several means of modifying the original techniques (along with presenting several orig-
inal ones) to improve the situation. These concepts include visual abstraction, data reduction,

output-sensitive rendering and (to a certain extent ) also hardware acceleration.
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Chapter 1

Introduction

One of the most sophisticated senses of a human is the sense of vision. The amount and the
complexity of information that the human visual system is able to process is great. Graphical de-
piction of real world phenomena has therefore accompanied the human civilization since its very
beginning. Whether it is artistic imagery or technical drawing, either of them has the potential
to communicate complicated information. In large number of cases it also surpasses the verbal
or numerical form of storing and presenting information. Hence the sdgipgture is worth a
thousand words.”

Due to the great presentational value of pictures and the powerful comprehension skills of the
human the visualization has become an invaluable companion to almost every field of science.
With the help of computers and interactive computer graphics the power of this cooperation is
even strengthened.

Considering the different uses of visualizing information, three main categories of tasks can
be declared:

1. Presentation— the knowledge that is already present has to be explained or presented
to another target audience. For example the poll results are presented by a bar chart to
emphasize the relative proportion of voters’ preferences — Figure 1, left.

2. Confirmation — a phenomenon or model is visualized to prove or disprove a certain hy-
pothesis about it. For example the hypothesis about correlation between a car’'s weight and
the power of its engine — Figure 1, right.

3. Exploration — similarly to confirmation, the observed model is visualized. In contrast to
it, the graphical depiction is observed to search for interesting relations not known before-
hand. Such exploratory-oriented data visualization is now the leading visualization task
in many areas of science and together with statistical and data mining methods they form
what is now calledhe visual analytic$43].

This project focusses on the exploratory task of visualization. Using the visual analytics
language, it means wiscover the unexpected@hat means to reveal relations and structures that
were not anticipated before or that can not be easily located using computational approaches of
statistics and data mining.
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Figure 1.1: Basic visualization for presentation and confirmation purposes.

Left: A bar chart visualization of the voters’s preferences.
Right: A scatterplot visualization of car performance versus car weight. A clear relation can be
seen that confirms the hypothesis that powerful cars are heavier.

1.1 Visualization

The main differences between computer visualization and the rest of computer graphics fields lie
within the priorities of each of these domains. Computer graphics, as is known to most of the

public and even to many of the scientists, aims to synthesize an artificial world that mimics the

behavior and looks of the real one. This is usually achieved by using photo-realistic rendering,
sophisticated physical lighting and shading models as well as detailed geometric modeling. The
main application targets of this approach are virtual environments for medical or engineering

purposes, special effects for entertainment industry and similar.

On the other hand, computer visualization, be it scientific or medical or information visual-
ization, strives to create imagery that describes a certain model using the most comprehensible
graphical techniques. The photo-realism of such a rendition is the least aim. The overall infor-
mation value of the display is the top priority over features like special effects and eye-candy.
Going even further, we can say that computer graphics tries to create a virtual world in a way
that we believe. Visualization tries to present the actual world in a way that we understand it.

Even though the visualization domain is united in its aims and goals, the techniques to achieve
them vary among different subdomains. This is due to the fact that different types of data have to
be visualized and different target application requirements have to be met. Three specific groups
of similar properties can be formed to subdivide the visualization domain:

1. Medical visualization — data obtained by computer tomography or similar technology
is visualized using three-dimensional visualization or by two-dimensional slices. Medical
visualization helps the doctors to plan operations, assess the condition of the treated subject
and in general to take actions that are not invasive with respect to the patient. Compared to



Figure 1.2: Different views of an eye

Left — photorealistic computer graphics [8Middle — medical or scientific visualization [4].
Right — information visualization [5]

other visualization applications, medical visualization strives the most for a photo-realistic
imagery. However the priority remains on the side of a clear and understandable image.

. Scientific visualization— the sources of data for scientific visualization are much more
diverse compared to medical visualization. Physical simulations and real world measure-
ments model real world phenomena such as flow, dispersion, magnetic or electric fields
etc. Many of the visualized attributes and properties are abstract and have no graphical
form in the real world — e.g. turbulent energy inside a flow or temperature of the en-
vironment. Therefore the graphical methods of scientific visualization introduce virtual
elements such as arrows, pathlines, isolines and different glyphs. However, similarly to
medical visualization, these data contain certain underlying spatial organization. Usually
a two-dimensional or three-dimensional real world space is modeled and the source data is
provided in the form of a two-dimensional or three-dimensional vector field. These spatial
properties define the geometric cornerstones of the visualization and the spatial organiza-
tion of the resulting rendition tends to correspond to our perception of the organization of
the three-dimensions in the real world.

. Information visualization — unlike medical or scientific visualization, the information
visualization does not rely on the underlying spatial structure of the data. At the very least
because the source data often does not have any given geometry. The projection from the
model space to the screen is therefore not intuitive and it is much harder for the observer
to build mental models visually. But, as proven by numerous applications, in many cases
it is the best, and often the only, option to communicate information from the numerical or
textual representation to the abstract human thinking.

The different approaches to visualization operate on various types of data and target various sub-
tasks. However in the exploration of real world it often happens that the observed phenomenon
has many various properties that can not be purely assigned to a certain kind of visualization.
Therefore visualization methods are often combined to create a multi-view environment in which
different techniques cooperate to create the effective visualization of the given data. For instance,
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Figure 1.3: John Snow’s map of the cholera spread in the Soho quarter. The black dots mark the
deaths of cholera. In the visual center of the dots lies a black cross marking the position of the
Broad Street pump, which was indeed the local center of the epidemic.

meteorological applications combine a quasi photo-realistic visualization of satellite images with
scientific visualization of dynamic atmospheric features and with information visualization of the
measured variables.

1.2 Information visualization

Exploratory data analysis through graphics has a history of its own. The legendary case of cholera
outbreak in London describes the use of visualization to determine the cause and the source of
the cholera spread in the Soho quarter of London [44]. Since then, information visualization has
gone a long way. Now it is heavily supported by computers and computer graphics in order to
create sophisticated interactive multi-view environments that support data analysis and decision
making. Using the definition from [12], information visualization (or shomtifpvis) is

"the use of computer-supported, interactive, visual representations of abstract
data to amplify cognition.”

The advantage of visualization lies in the ability of human brain to make effective judgements
about a large number of items just from their visual appearance — the position, color, shape or
motion. Groups of similar properties, or on the other hand — noise patterns and outliers, can (in
most cases) be discovered instantly [45]. Compared to automated machine-based statistical or
data mining methods, which have the same aim, the human brain has the advantage of non-linear
thinking, uncertainty, intuition and domain knowledge. All of them can be employed at once
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during the human cognitive process which results in discovering structures that are hidden to the
rigid, formal and domain-ignorant mathematical methods.

The wide variety of infovis techniques ranges from the simplest visualization to sophisticated
designs of complicated structure and meaning. The different information communicated through
infovis is very diverse. But understanding the absence of a greater common denominator of the
source data and target application reveals the motivation for creating different infovis techniques
and modifying them to fit particular needs.

1.2.1 Data of interest

The source data that is usually depicted by infovis techniques originates in wide range of ap-
plication or research domains. It is obtained using different data acquisition techniques and it
describes different models. Nevertheless, there are few common properties that can characterize
this data or categorize the types of the observed attributes.

Types of values

The type of variables of the model can be considered using different aspects of it. To illustrate
the different data types we can consider the cars data set [1] which describes a set of 392 car
models by recording different properties of them. These properties define the dimensions of the
data space and the semantics of the particular dimension — Miles per gallon, Number of cylin-
ders, Horsepower, Weight, Acceleration (the time to accelerate from zero to a certain velocity),
Year of manufacture (1970-1990), Country of origin (America, Europe, Japan).

With respect to the number of values the attributes within this data set can be divided into
e continuous— Miles per gallon, Horsepower, Weight, Acceleration
e discrete— Cylinders, Year, Country
The discrete attributes can further be divided into
e ordinal — Cylinders, Year
e categorical— Country

The categorical attributes are also often referred to as nominal. They form a special type of
data since no ordering or a comparison relation is defined within such an attribute. Even though
some categorical values are numerical (e.g. credit card numbers) they can not be treated as
ordinal values. This project does not consider categorical values, since the visualization of such
attributes is a complicated self-standing issue itself [21].



Dimensionality and volume

As the observed models have multiple interesting attributes, the resulting data also contains mul-
tiple attributes or data dimensions. For example a single observation in a census, say a household,
can be described by such properties as number of family members, male/female ratio, average
income, mean age of the children, distance from town center, average commuting time and so
forth [3]. The dimensionality of such a data can range from low-dimensional data sets contain-
ing three to ten dimensions through multi-dimensional data sets of tens of dimensions up to very
high-dimensional data sets of even hundreds of dimensions [48].

Another property describing the data set is the number of data samples or observations. Each
observation represents a single entity in the observed space. It may be an individual in the census,
a stock in market data or a certain position in space within a physical simulation.

We can picture the data set, as stored inside the numerical domain of a computer, as a table
of a spreadsheet. The observations are the rows of the table and the different data dimensions are
the columns of the table. Hence the extreme cases of data sets can be described as "tall” — having
a large number of observations but only a small number of dimensions, or "wide” — having a
small number of observations but each with a high number of attributes. Due to the limitations
of the data storage and data acquisition processes it rarely happens that a data sets has both large
number of observations and large number of dimensions.

1.2.2 Interaction

Information visualization benefits from interaction by several means. First of all it makes the
visualization more flexible and available to fit the needs of the user without needs to redesign
the actual visualization. This is especially important in exploratory data analysis where the goal
of the analysis is not known beforehand and the visualization must be able to provide different
options of insight on the observed data [31].

Another, and often the most important, advantage of interaction is that by manipulating the
view and observing the changes, the user builds a mental image of the model inside his/her brain.
If this change happens within a fraction of a second (i.e. in nearly real time) the user immerses
into the visualization and gets the feeling of actually touching the data [15].

The interaction options of a display involve changing parameters of the visualization (dis-
played axes, data value ranges, type of visualization), changing parameters of the data projec-
tion (rotating, zooming, panning) and manipulating the data (selecting and highlighting samples,
hiding them, creating semantics and relations [47].) There are numerous interaction tools and
metaphors to visualization. Compared to other visualization domains, the information visualiza-
tion handles the most of them [42].

1.2.3 Multiple views

Often a single visualization method does not suffice to effectively present the observed data and
multiple different methods or different instances of the same method are used. This creates a
multiple view environment. Such environments are widely used and often incorporate displays
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Figure 1.4: SimVis [6] — an example of a multiple view environment combining different visual-
ization techniques

of scientific visualization as well. If these views are interlinked via sharing the same interaction
metaphors and data access approach, the user receives the information by different presentation
channels. The connections between multiple views, as described in [10], help to understand a
complex model and to gain combined information that would be hard to perceive if only a single
visualization or a set of unlinked visualizations would be present.

The linking between different views mostly involves sharing the set of selected samples — the
focus. If a user is interested in a certain portion of the data set this portion is usually selected
in one of the views and this selection is then adopted by all the other views so that the user can
observe the behavior of the selection from different perspectives.

Current visualization applications usually use multiple linked views and the concept of multi-
view visualization has become a standard in the visualization domain. The connection of scien-
tific visualization and information visualization into a unified framework also enlarges the appli-
cation scope of the visualization and improves either part of the visualization by presenting the
data from another point of view [14].



Chapter 2

Large data in information visualization

The development of information technology and scientific processes implies the improvement
of data acquisition and data storage methods. The information increase steeply accelerated by
the end of the 20th century through many novel effective and powerful tools in science and
commerce — computer hardware, the Internet, measuring technology etc. It is estimated that
one exabyte of unique data is produced every year [26]. The large size of the data produces a
significant pressure on the limits of information visualization. Thus the topic of this project and
the solutions in it consider this issue in order to improve real situations and to contribute to actual
application needs.

2.1 Origins of large data

The application domains that take advantage of infovis are different and include for instance
economy, natural sciences (biology, chemistry), engineering, marketing and many others. There
are several causes of the great information increase in these areas. Natural sciences benefit
from cheaper and more precise measuring devices that enable the scientist to conduct a larger
number of observations and to gather information about a larger number of attributes such as
concentration of chemical elements.

Improvements in data storage are the leading cause for information increase in areas of mar-
keting and economy. The current technology for automatic data processing is capable of record-
ing millions of financial transactions or stock operations every day [27]. The commercial com-
panies maintain large databases of shopping habits of their customers to increase their own profit
by choosing an effective marketing strategy.

Engineering experts are capable of simulating their experiments with better precision and to
sample the real world in much finer details. All these improvements of technology together with
the accelerating growth of the human civilization itself are the source of the large data that is the
motivation for this project’s research.
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Figure 2.1: Parallel coordinates visualization of 5 dimensions (left) and 42 dimensions (right),
as described in [48]

2.2 Large number of dimensions

One aspect of the information increase is the increasing number of data attributes. New ways of
observing real world and new real world phenomena cause that the number of dimensions that a
certain model involves might grow to very high values. For example geochemical measurements
now consider the concentrations of elements and substances resulting in over 500 attributes in
some of the cases.

Even though there are several visualization techniques that are primarily designed to display
multidimensional data (e.g. parallel coordinates [23], worlds within worlds [17], projection pur-
suit [20]) they do not scale well for really high number of dimensions (Figure 2.1) For data sets
of high dimensionality even these techniques soon reach their limits and their contribution to the
information cognition diminishes due to various problems [48].

Although the large number of dimensions is not the primal target of this project, there are sev-
eral techniques to be recognized. For instance dimension reduction techniques (self-organizing
maps [30], multidimensional scaling [32], principal component analysis), dimension subsetting
techniques (scatterplot matrix) or dimension embedding techniques (worlds within worlds [17])
handle large number of dimensions. This is done either by reducing the number of dimensions
by computations in the data space and by sophisticated graphical layout in the screen space.

2.3 Large number of samples

The main focus of this project is to handle the increasing number of multidimensional data
records processed by visualization. Nowadays databases store millions of items and every day
this number increases. The contemporary data processing technology more or less scales to this
high number of records, at the least because it actually is the technology that produces it. How-
ever visualization techniques are not that scalable and therefore a significant improvement is
necessary to allow for effective large data visualization.
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Figure 2.2: Large data causes a significant clutter in information visualization displays. For
instance the parallel coordinates view does not show any apparent structures (left) and in the
scatterplot many of samples are hidden beneath the others (right).

The limitations that obstruct the visualization techniques from displaying a large number of
samples reside on both sides of the user interface. Computers, even with their powerful hardware
and graphics acceleration, soon reach their performance limits and are not able to transform a
large number of data values to their geometrical projections in a reasonable time. On the other
hand, the human perception has also its limitations that stem from the properties of the human
visual system. This project considers both of these aspects and tries to develop solutions to
improve the overall situation.

2.4 Definition of the problem

Increasing the volume of the data records in visualization has several undesired effects. The
relevance of either of them depends on the actual kind of visualization technique but all of them
negatively affect the way the user perceives the graphical form of information. An incorrect or
misleading visualization can lead to an incorrect judgment or decision about the observed model.
Moreover many interesting features of the data might remain hidden to the observer and the value
of the visualization is hence damaged [37].

Aggregation

One of the main visual judgments a user makes when observing a data visualization is the relative
density of items or the relative population of certain subareas of the model space. This forms the
notion of the data distribution and the structure of the features inside the data.

Every graphical representation of an item occupies a certain portion of the screen space and
the screen space is limited in its capacity. Therefore every visualization method has a capacity
limit when itis no longer possible to ascertain which parts of the screen contain more samples and
which parts contain less. This effect is called aggregation and it affects the density information
of the display (Figure 2.2)
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Occlusion

Another important issue also stems from the capacity limits of a visualization. Due to the low
dimensionality of a computer display it naturally happens that after a projection from the mul-
tidimensional data space certain items are given the same screen position. Depending on the
type of the visualization it often happens that one item occludes the other one and therefore the
occluded item remains hidden to the observer (Figure 2.2)

In a multivariate case this might create an undesired information alias as illustrated by the
following example. Consider a data set describing a part of the human population with respect to
their age, weight and gender. We draw a scatterplot of age against weight and we color the spots
according to the gender — blue for males, red for females. If the data records are rendered without
considering the drawing order it might happen that the spots representing males occlude the
spots representing females resulting in elimination of many of the male samples. This incorrect
visualization would then mislead the observer into a judgment that the data contains only a few
(or none at all) female samples.

Speed

The last but not least important issue is the actual speed of the rendering. Infovis is not a typical
performance-oriented graphics application, however the response time it takes for the display
to provide the user with visual feedback is a critical parameter when it comes to interactive
visualization. If the display does not operate interactively the user loses the coherence between
his/her actions and the reactions of the computer. Apart from losing touch with the data, the
negative effects of high response time include change blindness and attention distraction. Not
speaking of prolonging the time to finish the given exploratory task.

Considering speed, the increased rendering time might seem as an issue to be solved by
having more powerful computers in the future. But it is a presumption that can not be relied on,
since with the growing rendering power of computer the data acquisition and data storage power
of computers will rise as well. It is more likely that the size of data will grow at least as fast as
the rendering performance of the hardware will. Therefore a more principal solution has to be
employed even for the speed issue.

The relative importance of the individual large data problems can hardly be judged. Gener-
ally said, neither one "wins” over the others. There are several successive steps in the infovis
pipeline leading from digital data to a graphical display (see Figure 3.1) and none of these steps
should be weighed a lower measure. It is clear to see that the complications mentioned in this
chapter can no longer be believed to be solved by more powerful computers in the future. Ei-
ther they are of perceptual nature or simply the balance between computational performance and
size of data is not going to change dramatically in future. The next chapter introduces several
approaches to improve large data visualization on a technical and (which is more important) also
on a fundamental level.
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Chapter 3

Solutions

By introducing large data to an information visualization system, every single part of the whole
system becomes a potential weak spot of the design with respect to large data. Only the con-
struction of the actual application framework influences the actual location of the bottleneck.
Therefore the solutions can not focus on a certain part of the visualization pipeline (Figure 3.1)
and have to treat the problem either on a global scale or at every single step. Preferably on a level
that is rather technological than technical.

In general there are two basic approaches to deal with large data in information visualization.
The modifications might be oriented to operate on the data-side of the process, incorporating
statistical and data mining techniques to organize the data or simply reduce its size. Another ap-
proach focuses on the graphical output by creating novel visualization methods or by increasing
the capacity of other methods.

Data Filtering F Mapping F Tr\a/rl'ni\?grsn?:t?gns F Rendering

Figure 3.1: Visualization pipeline

There are many pros and cons to each of these approaches. The recent development in the
field shows that an effective large data visualization can only be achieved by a reasonable com-
bination of both approaches [46, 35, 22]. The following sections categorizes the state of the
art in large data visualization. In final, these approaches are summarized and the fundamental
directions of research are lined out.
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3.1 Data space methods

A natural approach to solve large data visualization problems is to remove the cause of the com-
plications — the large data themselves. The relatively old and well-based grounds of automatic
data processing, statistics and data mining are the background of all data-oriented methods that
strive to re-organize the data to a smaller scale. It is the common aim of the data-oriented meth-
ods to provide a less demanding data set to describe the same model.

The motivation to use less data to contain the same information is obvious — to save data
storage capacities and data processing power. However, with data reduction comes the question
of the balance between the size of the data and the truthfulness of it. It is clear that these two
variables are bound by a, more or less, inverse proportion. The speculations about the effective
tradeoff between data simplicity and data authenticity are a common issue in all research domains
that incorporate numerical models of real world.

Information visualization has a special set of priorities when considering this tradeoff. It
originates from the needs of the actual graphical representation of data. Data entries should
be treated according to their visual importance. A well-designed data processing method in an
infovis environment does not ignore the screen space. On the contrary, it exploits the specifics of
the given visualization to process the data in the most effective way with respect to the resulting
visualization.

3.1.1 Sampling

The most simple way to reduce the size of the data is to simply "cut” or "pick” a certain portion
of it. Of course the consequences of an unwary data reduction are very likely to be disastrous to
the final visualization. Intelligent ways to select a subset of data have to be employed to prevent
from damaging the information during sampling.

Some of them include random sampling, for instance in large data visualization by Ellis and
Dix [13]. The randomness in sampling preserves the relative density of individual sub-areas — an
effect that is important to preserve the information about the core structures of the data. However
if the sampling is applied in a uniform manner over the whole scope of the data, structures
of low density or small scale might disappear. A working solution is to devise non-uniform

Figure 3.2: Example of sampling in a cluttered scatterplot. The subsampled area under the
sampling lens reveals a hidden structure
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Figure 3.3: Visualization of clustered data by hierarchical parallel coordinates (left, [22]) and by
visual abstraction for parallel coordinates (right, [37])

sampling [11] which considers the relative densities and choosing the sampling rate accordingly.
For example the low density areas might not be sampled at all to preserve outliers and small scale
features and areas of the highest density are sampled using the lowest sampling rate.

A prototype of an intelligent sampling of large data in information visualization is presented
using the Sampling Lens by Ellis, Bertini and Dix [16] as illustrated in Figure 3.2

3.1.2 Data abstraction

A more radical approach, compared to filtering or sampling the original data, is to replace the
original data by a derived form. If this form is less demanding and preserves the original informa-
tion, the resulting data abstraction provides a promising solution to help large data visualization.
The information from the original data can be abstracted using various techniques, most of them
are based on statistical or data mining methods.

One of the drawbacks of the automatic data abstraction methods is that, due to their statistical
nature, they might produce too crude and too abstract results without any human-given seman-
tics. These methods were not originally designed to help human-based data exploration but to
substitute for it. Automatic (or unsupervised) data mining or feature extraction are computer-
oriented approaches that do not involve any particular visual feedback. Many of them do not
include any human feedback at all, operating autonomously and giving results in the form of
statistical values — mean, variance, clusters, purity index etc.

The nature of these supportive methods predefines them to be used in the early stages of the
exploratory session. Using them on a small scale helps to reduce the data and, at the same time,
create a effective data representation that works fine with the visualization. Moreover, if the
visualization is aware of the data abstraction, a joint effort can be designed in the form of visual
abstraction ([22], also Figure 3.3)

Data preprocessing with the help of abstraction is a successful way to reduce data and to
create a simple representation for the contained information. The used methods include, among
others, clustering, vector quantization or feature extraction.
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Clustering

The primary presumption to introduce clustering as a pre-processing step in visualization is that
the observer of the visualization is looking for groups and trends inside the data. This holds
for most of the visual exploration applications and therefore clustering (together with other data
abstraction methods) provide useful improvement to large data visualization.

Clustering is a statistical and data mining method that groups items of similar properties
into clusters. Usually a certain form of the mutual distance of data records is used to decide
the similarity. Different multidimensional metrics include Euclid, Mahalanobis, Chebychev, or
k-nearest neighbors for large numbers of dimensions.

Vector quantization

Originating in signal processing and compression, vector quantization offers another way of data
abstraction. The result of vector quantization is a set of code vectors that give a locally optimal
approximation to the original data. The concept allows for specifying the final number of code
vectors and the algorithms scale well even for large data.

If used properly, vector quantization can be used to reduce data size in visualization and thus
to help large data infovis.

Feature extraction

If the data comes with a certain domain knowledge — e.g. physical simulation data or financial
data — the data can be abstracted and thus reduced by the means of feature extraction. Features
are groups of records that follow a certain criterion with respect to their behavior. For example
econometric data produced by analyzing parameter space of a set of differential equations contain
basins or attractors [40]. These features are typical to the domain of differential analysis and can
be detected in the data. Extracting them from the original data creates an abstraction above the
data and the originally large data are reduced to a set of features and descriptors.

3.1.3 Density-based representation

The data sampling and data abstraction methods investigate single data records and then form
(often synthetic) data that approximates the original information or model. However, starting
from a certain size of data, the different individual records lose their individual importance and

it starts to be reasonable to consider relative density of different data areas instead.

Continuous density information is computed by fitting a density distribution function of a
certain probabilistic model (or a mixture of them) to approximate the original data. This approach
tends to be extremely demanding in large data cases, therefore the discrete density is usually
used [9, 34].

Discrete density information is obtained by dividing the original data space into different
areas and computing the population of the individual areas. The position and size of the areas
is the matter of choice of the respective technique. Regular techniques divide the original data
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Figure 3.4: The Parameter Explorer application [41] extracts special features from the parameter
space of a system of differential equations and visualizes them.

space into a set of equally-sizeddimensional intervals — bins. This approach is well scalable
and has predictable error and complexity [38].

However, real-world data often consists of different structures of different size and even dif-
ferent distribution models. In such cases it is more efficient to sacrifice the predictiveness of
regular binning and to employ adaptive space subdivision. Similarly to quadtree and octree al-
gorithms used in three-dimensional scene representation, the data space is repeatedly subdivided
until the desired precision is reached.

The disadvantages of space subdivision emerges in data spaces of extremely high dimension-
ality. Memory complexity of binning grows exponentially with the number of dimensions and
even for data sets with tens of dimensions it is not feasible to achieve a reasonable precision
within the bound of physical memory.

3.1.4 Hierarchical data organization

As have already been explained, there are different ways of decreasing the complexity of the
incoming data in information visualization. Most of them create data of smaller size and elimi-
nate the original data by merging the individual data samples (clustering), hiding some of them
(sampling) or discarding them all (density representation) . But often the original data contains
important detailed information and it is undesired to obstruct the observer in investigating the
individual records of the original data set.

The methods are therefore combined to create a hierarchical data representation that holds
different levels of detail of the data. The lowest level contains the original data and upper levels
of the hierarchy provide data representation of smaller size [22]. The construction of the upper
levels may utilize any of the above mentioned data-oriented approaches. Even a combination of
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them — for instance the first level above the original data might be created by intelligent sampling
and the level on top of that might be clustered to create an abstract data representation [36].

An important issue with respect to hierarchical data organization is the interaction with the
user. The system must provide efficient ways of navigating through the hierarchy otherwise the
actual purpose of creating it diminishes. This depends on the respective visualization method
and some implementations even contain a special display for exploring the data hierarchy [22].

3.2 Screen space methods

The set of methods dealing with large data in the screen space is smaller than the one of data-
oriented methods. The reason is simple: the statisticians and information scientists have dealt
with data sampling, data abstraction or density estimation long before computer-based visualiza-
tion. In spite of the short history of large data information visualization, there already are several
contributions designed to handle data of large size within the graphical part of the whole process.

3.2.1 Pixel-oriented techniques

Many of the large data visualization issues are caused by the situation when multiple data records
are displayed at the same position. The probability of this situation increases with the size of the
screen space occupied by the graphical representation of a single data record. The pixel-oriented
(or pixel-based techniques decrease the elementary screen space. Potentially to the size of a
single pixel. This enables the methods to display potentially millions of data records [18] in

a single screen. In combination with large screens (such as the PowerWall [2]) this creates an
interesting solution to large data visualization.

Pixel-oriented techniques are being successfully implemented especially for data sets of low
dimensionality or displays with low number of dimensions displayed. Algorithms like e.g. the
recursive pattern [28] or the gridfit algorithm [29] are used in visualization for financial analysis.
Some of them [25, 18] are also capable of displaying large hierarchies down to the level of a
single record (see Figure 3.5)

By having a single record represented by such small graphical element, potentially only one
pixel, not much of the screen resources is left to display additional information about the partic-
ular data record. Usually an additional property is mapped to the color of the pixel. For example
stock value trend [7] or file type [18]. The handicap of the pixel-oriented methods dwells in
the incapability of displaying multiple attributes at once. The additional data dimensions are
therefore often displayed in the form of tooltips or in a separate linked display.

3.2.2 Transparency in visualization

Similarly to density-based representation in data space, the transparency in visualization aggre-
gates density information in screen space. By utilizing semi-transparency the display gains an
additional dimension that represents the relative population of the particular screen area. The
structures and trends can then be told apart one from another by observing the different groups
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Figure 3.5: Interactive information visualization of a million items [18] using pixel-based meth-
ods. Visualization of a file system with the directory structure as nested rectangles.

Figure 3.6: The same data visualized without transparency (left) and with transparency (right).
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Figure 3.7: Semi-transparent clusters visualized with random rendering order (left) and with
rendering order depending on the size of the cluster (right).
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of adjacent visual elements [45]. The screen-space density is usually implemented and rep-
resented as the alpha channel in the color space of the display, where high alpha (or opacity)
values represent high density and vice versa.

Areas that are sparsely populated only receive the basic opacity while heavily populated areas
aggregate the transparency values and are highly opaque. This helps to perceive the relative
population of different areas and thus improves the situation with aggregation problem in large
data visualization (Figure 3.6) The second benefit of semi-transparency is that the graphical
elements that are rendered later do not occlude the earlier elements. This fixes many cases of
occlusion (see Figure 3.7)

Additionally, the alpha values can be stored in a high-precision texture and then the texture
can be transformed using different transfer functions [24]. This allows for instance for observ-
ing structures in low-population areas independently from high-population areas. Without the
transfer function properly applied, the result will either be clamped by the highest alpha value,
leaving no details in the high opacity area. Or it will be scaled down to the highest alpha value,
diminishing the importance of the low-population areas.

Semi-transparency and alpha blending bring up the question of correct blending mode and,
depending on the blending mode, the appropriate rendering order (see Figure 3.7) The different
applications choose specific approaches to this, mainly because different combinations provide
different visual clues. For instance additive blending is suitable to emphasize the population of
areas. To achieve the highest resolution with respect to opacity, the elementary transparency
value for an individual graphical element has to be rather low otherwise the opacity limit would
soon be reached (especially for large data). But the low elementary transparency discards low
population areas or outliers because they are barely visible. This might lead to information loss
in particular applications.

3.2.3 Output-sensitive rendering

While pixel-based and density-oriented methods focus on improving occlusion and aggregation
in information visualization of large data, the speed issue is given little attention. One way to
improve the speed of the rendering within the screen space is to use the rendering performance
wisely. If the actual technique is aware of the rendering specifics and also of its interaction
capabilities an intelligent scheme can be designed in order to render only those records or screen
portions that really contribute to the final rendition. This approach is called output-sensitive
rendering.

In the first step, the data records that would not affect the final image are left out. The capacity
limitations or the focus of the display determine criteria to detect such data records. For example
if the display utilizes additive transparency, the overlapping graphical elements soon sum up to
the full resolution of the alpha channel. The data records that would to be placed in the areas of
full opacity can be omitted from the rendering process.

Another application of output-sensitive rendering concept is to quantize the data in a manner
that the visual output does not change. If the quantization is designed according to the visualiza-
tion, for instance if bin size is set to correspond to one pixel, the information value of the display
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does not change. In many large data cases, optimizations of this kind save significant amount of
processing and rendering time.

The rendering can also take advantage of visual coherence before and after interaction. Not
all portions of the screen have to be updated and much of the already produced imagery can be
saved. By organizing the display into layers and/or segments, only the particular portion needs
to be updated with keeping the rest intact [38].

3.2.4 Hardware acceleration

One part of the whole visualization process is often neglected in many visualization prototypes
and tools. It is the technical implementation of the graphical end and the rendering part of
the projection. This is mostly due to the implementation demands that favor either novelty (in
academic research) or compatibility, portability and data-oriented robustness and reliability (in
commercial applications.)

It often happens that a popular visualization tool suffers from low interaction feedback or low
rendering performance because of not considering the technical improvements that are possible
using the advanced features of today’s GPUs.

It has been possible for a long time now to store many layers of rendering output in textures
or to perform geometric transformation on the GPU. The recent development of the GPUs (even
though powered mostly by the entertainment industry) brings many new features that can help
large data visualization either by decreasing the feedback time or by enhancing the display with
advanced rendering capabilities.

The GPUs nowadays provide high definition floating point textures that can contain den-
sity information of an infovis display. Rendering of large number of graphical elements can be
performed faster with vertex programs and novel features like instancing. All these and many
forthcoming features should be considered when designing an information visualization tool that
is supposed to handle large data [19].

3.3 Summary

As mentioned in the beginning of this chapter, effective information visualization of large data
should exploit the advantages of both approaches — working in data space and in screen space as
well. At the very least because many screen-space methods need to derive information from the
original data and, on the other hand, many data-space methods need appropriate visualization for
their special data structures. The particular combinations of data- and screen-based methods plus
the balance between them is a question of the respective application and exploratory task. What
is common to all of them, is the fact that when large data have to be visualized using information
visualization tools, analysis of the data has to be performed first.

The experience with large data visualization was summarized by Daniel Keim into the Visual
Analytics mantra, a modification to the original visual information seeking mantra of Ben Shnei-
derman —Analyse First - Show the Important - Zoom, Filter and Analyse Further - Details on
Demand”. The Visual Analytics agenda [43] realizes the importance of large data visualization
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in many critical fields — national security, computer networks, financial transactions etc. Fol-
lowing this motivation, the Visual Analytics combines the information processing performance
of machines and humans through visualization. This approach appears to be the future orienta-
tion of all information visualization since large data is quickly becoming a prevalent issue in all
research domains.

The best example for the effective combination of data-oriented and screen-oriented methods
is the Focus+Context paradigm [12]. The F+C techniques divide the data according to user
interaction into two groups — the focus, which is the area of interest and is displayed in high
details, and the context, which represents the rest of the data and uses low graphical resources.
The benefit of using this two-fold visualization is that the user sees the area of interest in detail
and does not lose the relation of the focus to the context within the whole data set.

In practice, data-oriented methods are used to build an abstract representation of the data
records that lie inside the context and also to separate the focus from the context. Screen-oriented
methods handle effective visualization of focus, graphical representation of the abstract context
level and the combination of these two. The F+C concept is a popular approach to visual explo-
ration and it is one of the core topics of this project.
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Chapter 4

Preliminary results

The results achieved during the course of this project and the respective research have already
been presented in various forms. This chapter tries to summarize the effort and achievement.
Also the preliminary results have to be put to the overall domain context to clearly determine the
contribution and weigh the importance of the effort.

4.1 Similarity Brushing

Similarity brushing deals with large number of dimensions in a low-dimensional display. Large
number of dimensions is not the primary focus of this project, but similarity brushing is an
effective presentation of the abstraction concept in visualization. As well as it is an example of
benefits of joining the power of human and computer to achieve effective data exploration via
visualization [39].

The multidimensional information stored in original data space is abstracted to sets of re-
lations between individual data samples. This relations represent the mutual similarity of two
samples. If this kind of derived information is present, it provides an abstract way of represent-
ing multidimensional structures in a low-dimensional space.

Traditional brushing is usually performed in the screen space as a selection of constraints on
points of interest — e.g. a rectangular brush. Then it is decomposed to several one-dimensional
interval queries and the eventual selection is evaluated as a composition of the queries. This
determines the nature of the brush to be a low-dimensional slice across the full dimensionality
of the original data space. Only the dimensions depicted in the screen space are taken into
account in traditional brushing. The final selection is a cartesian product of the one-dimensional
selections and therefore thedimensional brush performed using traditional technique is always
an axis-alignedi-dimensional box.

On the contrary, the similarity brushing uses the abstracted similarity information to extend
the brush into its full dimensionality. It is not inevitably box-shaped and axis aligned, which
provides better selection of real world features which rarely come in the shape of axis-aligned
boxes (see Figure 4.1)

The advantage of similarity brushing lies in the combination of human and computer actions.
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Figure 4.1: Segmentation of data using similarity brushing — complex, unsharp and overlapping
segments are seldom feasible when conventional brushing techniques are applied. With similarity
brush the segmentation process took less than a minute and required only simple interaction.

Figure 4.2: Extending the screen-based brush into the data space. The traditional screen-based
brush (painted in yellow) is extended in the data space by decreasing the similarity threshold.

The humans are not able to perceive real multidimensional information. Our perception capa-
bilities are quite low with respect to dimensions. However the computer can process multiple
dimensions and derive the abstract similarity information out of it. This similarity information
(which is a scalar value) is presented visually to the user and can be used to select structures
of shape and behavior that exceeds the dimensionality of the screen. Clearly the most obvious
benefits come in cases of low-dimensional visualizations, such as the scatterplot. The actual
performance of the similarity brush does not necessarily depend on the dimensionality of the
original data space.

The similarity brush starts as a traditional screen-based brush but then it is extended to the
data space (through the similarity information) an it can be repeatedly refined in the screen space
(see Figure 4.2) This tool can be successfully used to steer exploration and decision making in
low-dimensional visualizations. The similarity brush is a true multidimensional brush that does
not revert to axis-aligned bounding boxes brushes like the previous approaches to data-driven
brushes [33].
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4.2 Binning and output-sensitive rendering

The density-based representation approach is utilized in the advanced implementation of parallel
coordinates [38]. The resulting visualization is output-sensitive and is capable of visualizing
datasets of even millions of data records. At first the data is processed from the aspects of
two-dimensional subspaces, each corresponding to two adjacent axes of the parallel coordinates
display. Each of these subspaces is binned tom bins. A bin in this representation is rendered
as a parallelogram connecting its boundary values on the respective axes. The finest precision
corresponds to the highest At the precision ofn = 256 the binned visualization based on the
density-based representation is visually as precise as the original original parallel coordinates.
But compared to the original approach it communicates more information (see Figure 4.3) and it
also no longer depends on the size of the original data; it renders and reacts smoothly.

The most important benefit of binning lies not in the rendering speed. By aggregating the
data into larger bins, the display becomes clearer and the different structures are distinguishable
thanks to the scalable transparency mapping of the bins [36]. This would be almost impossible

Figure 4.3: Remote sense data [1](interpolated to 100.000 samples) rendered using conventional
parallel coordinates (left) and after binning to 2288 bins (right). Not only the binned repre-
sentation is precise enough to preserve the details (note the width of a bin) it also clarifies the
visualization thanks to the density-based representation of data.

Figure 4.4: Output-sensitive, outlier-preserving focus+context visualization allows to even ren-
der more than three million data items (a CFD simulation) into a parallel coordinates plot. Not
only is the binned representation spared from being cluttered by a million of data items, it also
renders interactively.
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in original parallel coordinates if large data would have to be visualized.

To avoid losing details in low density areas, the outliers are separated before the actual bin
visualization and are drawn on top of the bins. Using this combined approach, similar to Fo-
cus+Context techniques, the trends and the outliers can be visualized in parallel without having
to switch to different modes of focus.

The perception issues and output-sensitiveness were also considered in this sub-project. For
example the bins do not use transparency but are sorted according to their population and drawn
in the ascending order one on top of the others. This avoids enormous numbers of unnecessary
fragments and visual attractors that would be present if transparency had to be incorporated.

The screen is divided into layers, which means that if the focus changes, only the focus
layer is updated leaving the context layer intact. Also the display is divided into segments. One
segment holds the graphical information between a pair of adjacent axes. This allows for per-axis
interaction where only the adjacent segments (usually two) have to be updated and not the whole
display. By dividing the screen space into a three-dimensional spaegyofents x layers,
the area of the screen that actually has to be updated is heavily decreased resulting in an output-
sensitive rendering.

4.3 Visual abstraction

In extension to the previous effort dedicated to binning, the resulting density-based representation
can be used to perform fast data abstraction such as clustering. The reasons for using the density
information instead of the original data are two-fold. The density information uses much smaller
data, therefore the heavy data processing that is performed during data abstraction takes less
time and can even be done in real-time. The second reason stems from the fact that many data-
abstraction methods, e.g. clustering or multidimensional scaling, only provide locally optimal
approximations. By having the option to run a single iteration of an algorithm in a very short time
(thanks to the simple density information), we can afford to run more iterations of the particular
algorithm or even process several runs with different starting conditions and then combine the
results to achieve a better approximation (Figure 4.5.)

In the parallel coordinates project, this is done using the two-dimensional binning in the two-
dimensional subspace defined by a pair of data dimensions that are mapped to adjacent. Binning
in two dimensions is very similar to creating a two-dimensional histogram of the particular sub-
space. This histogram is treated as a height map with height of a particular vertex being the
population of the according bin. This creates a notion of a terrain or a relief, which can be
divided into clusters by decreasing the height threshold.

This idea is novel in at least two ways. First of all it does no longer tamper the original data
and therefore its complexity does no depend on the size of the original input data. The source data
is uses —the density information —is a by-product of another process — the binning — and therefore
it can be considered a zero cost to the whole algorithm complexity. Second the clustering based
on the two-dimensional histogram is an original idea that combines the advantages of statistical
density estimation methods with the benefits of fast discrete data representation [38].
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Figure 4.5: Clustering of the binned data performed between the 11th and the 12th axis (red
axes). The respective two-dimensional subspace was binnedxt6468ins and clustered by

the occupancy values of the bins. The distinct colors show four clusters extended to all the
dimensions.

4.4 ffVis — Hardware acceleration of parallel coordinates

The technical background of rendering for information visualization is also considered in this
project. The ffVis application is a prototype implementation of the state of the art GPU features
to improve information visualization of large data. The parallel coordinates is a very demanding
graphical application consisting of many overlapping lines. An effective large data visualization
using this popular and useful technique would be impossible without using proper hardware
acceleration [19].

Some of the features the program implements and successfully tests are:

e \ertex arrays and vertex programs — the line geometry is stored in vertex arrays and the
GPU is used to compute its screen coordinates a and color. By exploiting the native parallel

processing pipelines of the GPU, this improves the performance greatly compared to the
original CPU-based computation.

e Stencil test — rendering semi-transparent lines clears up the display but it also introduces a
serious performance hit. For large data cases with many overlapping lines, the rendering
speed is decreased by 70%. By using stencil test this damage is lowered and the overall
penalty in using transparency decreases speed only by 25%.

e Frame buffer objects and advanced blending — the actual rendition is stored in a high def-
inition texture. This stores the screen density to future re-use and the density mapping
function can be changed without having to re-render the view. Changing the density map-
ping function, or the transfer function (as some call it), changes the focus between areas
of high density and areas of low density. The exploration of trends and outliers and differ-
ences between them is thus feasible even for large data cases.
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Chapter 5

Future Work

The documented results together with the related work give many ideas for future research. The
large data in information visualization (and in visualization generally) is an exciting phenomenon
that motivates combination of different approaches and stimulates research in many directions.
The future of the project is oriented mostly on improving the combination of data-oriented and
screen-oriented methods.

One of the practical issues is an intelligent outlier detection and special handling of the out-
liers. Pre-processing in the form of binning proved to be a good starting point for outlier de-
tection, mainly because it eliminates the large data. The importance of outliers differs between
eventual visualization application, but in general they should not be thrown away by the data
abstraction or data reduction methods. They often contain valuable information and therefore
they need to be treated separately both in the data space and in the screen space.

Another demand extends the popular Focus+Context concept. Certain applications dealing
with large data need more levels than the two present in F+C. Levels sushpasContext
Mid-Contextor Superfocuseed to be devised and carefully visualized.

The binning is a good starting point for other advanced data-processing techniques. Using
the binned data representation, techniques such as Focus+Context or direct manipulation can be
introduced to displays that were not capable of handling those because of arduous effort spend
on dealing with large data.

These and others are the future directions of the research with respect to the documented
project. The importance of large data visualization is becoming hot topic in more and more
research domains and therefore new improvements and contributions are necessary. The project
is taking a promising direction in introducing new and effective solutions to the problems caused
by large data in information visualization.
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