16. Describe the algebraic variety $V(xy, xz, yz) \subset \mathbb{A}^3(\mathbb{R})$.

17. Show that the unit circle in $\mathbb{A}^2(\mathbb{R})$ together with its center is an algebraic variety, i.e. find a polynomial equation or a system of polynomial equations such that its/their solution is exactly the given set.

18. Show that the set

$$(a,b) \mid a+b \in \mathbb{Z} \}$$

 $\{(a,b) \mid a \in \mathbb{R}^n\}$ is not an algebraic variety v $\mathbb{A}^2(\mathbb{R})$.

19. In $\mathbb{A}^2(\mathbb{R})$ consider the sets

$$M_1 = \{(1,1), (\frac{1}{2}, \frac{1}{2}), (\frac{1}{3}, \frac{1}{3}), \dots, (\frac{1}{n}, \frac{1}{n})\}$$
$$M_2 = \{(1,1), (\frac{1}{2}, \frac{1}{2}), (\frac{1}{3}, \frac{1}{3}), \dots, (\frac{1}{n}, \frac{1}{n}), \dots\}$$

For each of them find out whether it is an algebraic variety. If yes, find the defining polynomials. If not, prove.

20. Consider the set consisting of the point (1, 1, 1), the point (-1, -1, -1) and the points $\{(0, t, 0) \mid t \in \mathbb{C}\}$ (y-axis). Decide whether the given set is an algebraic variety in $\mathbb{A}^3(\mathbb{C})$. If yes, find the defining polynomials. If not, prove.

21. In \mathbb{A}^3 consider the three circles: each has its center in the beginning of the coordinates and radius 1, the first one lays in the *xy*-plane, the second one in the *yz*-plane and the third one in the *xz*-plane. Decide whether the three circles form an algebraic variety. If yes, find the defining polynomials. If not, prove.

22. Consider the set A of all 3×3 matrices over \mathbb{R} , so

$$A = \left\{ \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right), a_{ij} \in \mathbb{R} \right\}.$$

This set can be naturally seen as the affine space $\mathbb{A}^9(\mathbb{R})$, where the coordinates are a_{11} , a_{12} , a_{13} , a_{21} , a_{22} , a_{23} , a_{31} , a_{32} , a_{33} .

- (a) Show that the set of all singular matrices in A is an algebraic variety in this space.
- (b) Show that the set of all matrices in A with the rank at most 1, is an algebraic variety in this space.

23. Consider the surface

$$V(3x^2 + 3y^2 + 3z^2 - 10xyz - 3)$$

in $\mathbb{A}^3(\mathbb{R})$. Find out whether the surface contains the line of intersection of the two planes

$$V(x - y - 2z + 2)$$
 and $V(2x - 2y + z + 1)$.

24. (m) Let $M \subset \mathbb{A}^1(\mathbb{C})$ consists of all points of complex affine line with the real coordinate. Is M an algebraic variety in $\mathbb{A}^1(\mathbb{C})$? Give reasons for your answer.