5. Rings and ideals

25. Let R be a ring and let $G \subset R$ be a non-empty set. Prove that

$$(G) = \{r_1g_1 + r_2r_2 + \dots + r_kg_k\}$$

(i.e. the set of finite combinations of elements from G with coefficients from R) is an ideal in R.

26. In the ring $\mathbb{Q}[x]$ consider the ideal I = (f, g) with

$$f = x^{4} - x^{3} - 2x^{2} + 5x - 3$$
$$g = x^{5} - 3x^{3} + 2x^{2}.$$

Find a polynomial h such that I = (h), and expess it as a combination of f and g over $\mathbb{Q}[x]$, i.e. find polynomials $u, v \in \mathbb{Q}[x]$ such that

$$h = u.f + v.g$$

27. Let R be a ring and let $I, J \subset R$ be ideals.

- (a) Prove that IJ and $I \cap J$ are ideals.
 - $(IJ \text{ is the set } \{a_1b_1 + a_1b_2 + \dots + a_nb_n \mid a_i \in I, b_i \in J\}.)$
- (b) Decide, whether $IJ = I \cap J$.

28. Let R be a ring and let $I, J \subset R$ be ideals. We define $I + J := \{a+b \mid a \in I, b \in J\}$. Show that I + J is an ideal in R. (Remark: I + J is the smallest ideal containing both I and J.)

29. (m) Let R be a ring and let $I, J \subset R$ be ideals. We define $I : J := \{a \mid ab \in I \forall b \in J\}$. (a) Prove that $I \subset I : J$.

- (a) Flove that $I \subset I : J$.
- (b) Prove that I: J is an ideal in R.
- (c) Find I: J if $I = (x^3y^2, x^2y^3, y^4), J = (x).$ (d) Find I: J if $I = (x^3y^2, x^2y^3, y^4), J = (x^2).$
- (a) $1 \mod 1 \cdot 5 \mod 1 (x \cdot g \cdot , x \cdot g \cdot , g \cdot), \ 5 (x \cdot).$

30. In a ring R consider an increasing chain of ideals $I_0 \subset I_1 \subset I_2 \subset \ldots$ Show that

$$I_{\infty} = \bigcup_{i=0} I_i$$

 ∞

is an ideal in R.

31. Let R be a ring and let $I \subset R$ be an ideal. For each $m \in \mathbb{N}_0$ let

 $J_m = \{a_m \in R \mid a_m x^m + a_{m-1} x^{m-1} + \dots + a_0 \in I \text{ for some } a_0, \dots, a_{m-1} \in R\},\$

so J_m is the set containing the leading coefficients of polynomials in I of degree m, together with 0.

- (a) Prove that J_m is an ideal in R.
- (b) Prove that $J_m \subset J_{m+1}$ for all $m \in \mathbb{N}_0$.