11. Gröbner basis.

66. Prove that the graded reverse lexicographic ordering is indeed a monomial ordering.

67. Prove that in the ring k[x] (k being a field), there is only one monomial ordering.

68. Let > be a monomial ordering. For two different monomials x^{α} , x^{β} , prove that if x^{α} is divisible by x^{β} , then $x^{\alpha} > x^{\beta}$. Does also the reverse implication hold?

69. Let the ring $k[x_1, \ldots, x_n]$ have a chosen monomial ordering. Let $G = \{f_1, \ldots, f_k\}$ be a Gröbner basis of an ideal $I \subset k[x_1, \ldots, x_n]$. If $LT(f_i) \mid LT(f_j) \ (i \neq j)$, then also $\{f_1, \ldots, f_{j-1}, f_{j+1}, \ldots, f_k\}$ is a Gröbner basis of the ideal I. Prove it.