Geometric

Structures

3. BSP

Martin SamuelCik
samuelcik@sccg.sk, www.sccg.sk/~samuelcik, 14



mailto:samuelcik@sccg.sk
mailto:samuelcik@sccg.sk
http://www.sccg.sk/~samuelcik

BSP trees

e Binary Space Partitioning

e Generaliyation of k-d trees, partitioning of
space using arbitrary hyperplanes

e Enabling sorting of objects
e Doom, Quake, Half-life...

/\
/\ :
PaN

Geometric Structures p.




BSP tree

e Let Sis set of objects (points, polygons,...)
e 5(v)is set of objects for BSP tree node v

e BSP tree 7(S) for set Sis defined:
—If |S] <=1, then 7(S)is leaf containing S
—If |S] > 1, then vis root 7and v contains divider
hyperplane A, set S(v)={x ¢ S, x € h,} and two
sibling nodes(subtrees) for objects on left
respectively right side of hyperplane A,
S = {xNh]|x € S
St:={xnhl|x € S)

Geometric Structures 3




BSP tree creation

BSPTreeNode* BuildBSPTreeNode (list polygons)

{

struct HyperPlane if (polygons.IsEmpty ()) return NULL;

{ BSPTreeNode* tree = new BSPTreeNode;
polygon* root = polygons.GetFromlList ();
tree->partition = root->GetHyperPlane ();

} tree->polygons.AddTolist (root);

list front_list, back_list;polygon* poly;
while ((poly = polygons.GetFromlList ()) != 0)

vector<float> coefficients;

struct BSPTreeNode {
{ int result = tree->partition.ClassifyPolygon (poly);
List polygons; switch (result)
L {
HyperPlane partition; case COINCIDENT:
BSPTreeNode* front; tree->polygons.AddTolist (poly);
BSPTreeNode* back; break;
} case IN_BACK_OF:
back_list.AddTolList (poly);
break;
struct BSPTree case IN_FRONT_OF:
{ front_list.AddTolList (poly);
break;
B * . )
SPTreeNode* root; cace SPANNING:
} polygon *front_piece, *back_piece;

SplitPolygon (poly, tree->partition, front_piece, back_piece);

o - back_list. AddTolList (back_piece);
BSPTree* BuildBSPTree(List polygons) front_list.AddTolist (front_piece);
{ break;

result = new BSPTree; }
result->root = BuildBSPTreeNode(polygons); }
It (polye ) tree->front = BuildBSPTreeNode (front_list);
| return result; tree->back = BuildBSPTreeNode (back_list);
}

Geometric Structures 4



Hyperlpanes

e Ling, plane, ...

o Implicit representation for ¢~dimensional space:
3, X;+aX*t...d X 48, ;=0

e (g,a,...a;) —normal, representing also orientation
of hyperplane, defining inside or outside part

e Point test — sign od result after computation of
implicit representation with point coordinates

e Polygon test — comparing point test signs for each
vertex of polygon

e Splitting polygons— searching for intersection of
boundary segments with hyperplane

Geometric Structures )



BSP tree splitting techniques

e Auto-configuration — O(n2)

e Arbitrary splitting techniques, time complexity
computation: T(n)=n+2T(%+an) € 0(n'*’), 0<a <4,

— a = average count of polygons split in nodes « 005 02 04

e For each polygon, choose point- L
representative (barycenter, center of BB, ...)
and find hyperplane, that splits set of

representatlves into two subsets with same
count AN | s J

Geometric Structures 6



Cost heuristics for split

e Computing quality cost of split
e Tree cost C(T)=1+P(T")C(T")+ P(T"C(T"),
— C — cost function, P — probability of visiting tree

— For example for point location(inside or outside
of object) P(T ) = Vol(T )/Vol(T), for raytracing
area of cell bounding subtree

e | ocal heuristics

— S — number of polygons, objects, s — split
objects count

CT=1+|S|*+|S* + Bs,

Geometric Structures 7



Automatic subdivision

e Hyperplane defined by one of given polygons

e Choose large polygons

— Large polygons have higher probability to be split, so this
way remove it sooner from set of polygons

— For first k largest polygons, compute cost function C(T)
and choose polygon with lowest cost

e Random choose k polygons

— From k polygons, choose one that will create smallest
count of fragments

e Used constants for cost function computation
-a=08,..,095 B=1/4,.. 3/4
~-k=5

Geometric Structures 8



BSP tree for raytracing

e Organizing tree based on specifics of geometric
search — for example rays emit from one point

* Cost of queries O i)« ftinralk
e We want to hit as less nodes as possible, polygons
with higher hit probability are places in higher in

tree hierarchy

e Probability of ray-polygon intersection:

— If the angle of ray direction and polygon normal is
smaller, probability is higher

— If the polygon is larger, probability id higher

. Area(p)
score(p) = JD w(S p, Do()dl, w(S p,1)=sin*(n,, rf)Area(S)’

Geometric Structures 9




Self-organizing BSP trees

e If distribution of polygons is not known or cost
function is harder to compute

e Constructing only necessary parts of BSP tree

e Each node also holds info about currently unused
polygons, that were not used until now

e Remembering how many times node of tree was
visited, if counter is above limit, the node is
subdivided and new subtree of node created

e Computing also intersection count of ray and
polygons in unsplit node, this counter is later used
for choosing split hyperplane

Geometric Structures 10




Visibility determination

Determine occluded parts of polygons in 3D scene

Painter algorithm — painting from background
towards front (polygons must be in simple
positions)

BSP — having partition of space, each hyperplane in
node splits space into two halves, half-space where
camera is positioned contains objects nearer to

camera, other half-space contains objects far from
camera

Always comparing split hyperplane with camera
position

Geometric Structures 11




Visibility determinantion

void DrawBSPTree (BSP_tree *tree, point eye)

near {
if (tree == NULL) return;
polygons real result = tree->partition.ClassifyPoint (eye);
if (result > 0)
- {
g DrawBSPTree(tree->back, eye);
. ],' tree->polygons.DrawPolygons();
\t{ P i ."r DrawBSPTree(tree->front, eye);
5 olygons, }
. polygons,

else if (result < 0)

¥ / {
'——‘_’.—-—'—' . I.I'f DrawBSPTree(tree->front, eye);
N . tree->polygons.DrawPolygonlList();
DrawBSPTree (tree->back, eye);
/ }
' Ise
/ e
; {

// the eye point is on the partition plane...
g DrawBSPTree(tree->front, eye);
DrawBSPTree(tree->back, eye);

Geometric Structures 12




Visibility determination

e Combination of several algorithms
e Bbackface culling
e Frustum culling

e Pixel rewriting in color buffer when rendering
— Rendering in front to back order

— Structure in screen space for remembering which
pixels were already filled — using 2D BSP tree

Geometric Structures 13




e Using blending (alpha-blending) in 3D

— Fragments of currently rendered polygon are
blended with color in framebuffer with some ratio

e Ordering of rendered polygons is needed
— Front-to-back order
— Back-to-front order

e Additive blending

>

Geometric Structures



Objects representation

e Closed objects

e Border of objects defines subdivision
hyperplanes

e Representation used for point test
o Unappropriate for smooth surfaces
5

3
/’ &“\\ / Hﬂm“»
3 4 6 out
S WL 7\
in out 7  out in out
7N

in out

Geometric Structures 15




Set operations on objects

e Crucial operations in geometric modeling

/?i\
\X/
/"‘“’\l/\/ﬁ7/“’”\
'\ﬂ/\/\>\ J

e BSP tree representatlon - connectlng two
BSP trees

e Union, intersection, difference — in BSP
representation, difference only in elementary
leaf operations

Geometric Structures




1. Part — BSP tree split

e For given BSP tree 7 and hyperplane H, create new
BSP tree 7, suchthat Ty =T HaT,* =T H*

e Hwill be new root

e Node 7 consists of (H,, p, T-, T7)
— H id split hyperplane
— pis polygon inside H

e Several configurations for hyperplane /in node 7
based on relative position of H and hyperplane in T

e Bounding volumes of each BSP tree node are
needed

Geometric Structures 1 4




1. Part — BSP tree split

R(T) H

split-tree(T, H, P)
{
/P =HnR(T)}
// R(T) — region of the cell of node T (it is convex)
case Tis a leaf:
return (H, T, T);
case “anti-parallel” and “on” :
return (H, T+,T")
case “pos./pos.” :
(T*1, T+2) = split-tree(T*, H, P);
Tt = (Hy py T, TH);
T2 = T+2;
return (H, T3, T2);
case “mixed” :
(T*1, T+2) = split-tree(T*, H, P N R(T*));
(T-1,T-2) = split-tree(T-, H, P N R(T7));
Tt=(H, p; N H-, T, T*);
T2 = (H,, p; N HY, T2, T*2);
return (H, T, T2);

+ analogic cases

pos./pos. mixed

Geometric Structures 18




2. Part — BSP trees connection

e For given 2 BSP trees, concatenate it into
one by inserting hyperplanes from first
inside second

o If C are sets of elementary cell of i-th tree
(represented by leafs of trees), then

resulting tree T5 has leaf cells:
Cs={ciNcalci€Cicy €CyciNey # D)

st pommene o : ; i / P e g
5 d - 1 5 5 \ | 5 n E
/"',-'"JH ".HH““"‘ s I"‘:;/Ha , x}>4<=
i g 4 \ o —>:/,/\ g, b =R 0 A St
—— ; —
/ —— \ e -~ e, \NL
n 'd '

Geometric Structures 19




2. Part — BSP trees connection

merge(T,, T,) > T,
{ Operation T, Result
if (T, or T, is a leaf)
{ U in Tl

perform the cell-op as required by the Boolean

operation to be constructed
} ’ out T2
(T,*, T,) = split-tree(T,, H,, ...);
’ . out T
T, =merge (T, T,); 1
+=|,.ner-ge (T+ T+) .
3 1220 c
T,=(H, T3, T,%) \ In T,
return T;
} out T,
} .
- In T,°
split merge merge ® 2
- ) - //// -~ n" “_" -
cell-op, T, is leaf

- -
- -~
- -
- -
>

combine

Geometric Structures 20




Collision detection

e Checking intersection between nodes of two
BSP trees

e Similar to raytracing algorithm

o Computation of hyperplanes intersections
between cells

e When checking for collision of camera and
object, computing intersection of segment
and BSP tree

Geometric Structures 21




Shadow volumes

e BSP tree storing polygons of shadow volume

e Determination if given surface point is inside
shadow volume = is in shadow

Geometric Structures



Shadow volumes

e Algorithm

— From light position, find all silhouette edges of
objects casting shadows

— Each silhouette edge expand in the direction of
light, creating polygons of shadow volumes

— Create BSP tree for boundary polygons of
shadow volumes

— For any point in scene, find leaf node where it is
positioned and read shadow information

— Can be used stencil buffer instead of BSP tree

Geometric Structures piC




Dynamic scenes

e Dynamic objects are reinserted into BSP tree
each frame

e Usually dynamic objects are represented as
points and rendered before static objects

e Inserting one point is much faster than
whole object with all boundary polygons

e Another option is to insert hyperplane
perpendicular to view direction

Geometric Structures 24




a5

Q
uestions?




