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BSP trees

e Binary Space Partitioning

e Generaliyation of k-d trees, partitioning of
space using arbitrary hyperplanes

e Enabling sorting of objects
e Doom, Quake, Half-life...
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BSP tree

e Let Sis set of objects (points, polygons,...)
e 5(v)is set of objects for BSP tree node v

e BSP tree 7(S) for set Sis defined:
—If |S] <=1, then 7(S)is leaf containing S
—If |S] > 1, then vis root 7and v contains divider
hyperplane A, set S(v)={x ¢ S, x € h,} and two
sibling nodes(subtrees) for objects on left
respectively right side of hyperplane A,
S = {xNh]|x € S
St:={xnhl|x € S)
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BSP tree creation

BSPTreeNode* BuildBSPTreeNode (list polygons)

{

struct HyperPlane if (polygons.IsEmpty ()) return NULL;

{ BSPTreeNode* tree = new BSPTreeNode;
polygon* root = polygons.GetFromlList ();
tree->partition = root->GetHyperPlane ();

} tree->polygons.AddTolist (root);

list front_list, back_list;polygon* poly;
while ((poly = polygons.GetFromlList ()) != 0)

vector<float> coefficients;

struct BSPTreeNode {
{ int result = tree->partition.ClassifyPolygon (poly);
List polygons; switch (result)
L {
HyperPlane partition; case COINCIDENT:
BSPTreeNode* front; tree->polygons.AddTolist (poly);
BSPTreeNode* back; break;
} case IN_BACK_OF:
back_list.AddTolList (poly);
break;
struct BSPTree case IN_FRONT_OF:
{ front_list.AddTolList (poly);
break;
B * . )
SPTreeNode* root; cace SPANNING:
} polygon *front_piece, *back_piece;

SplitPolygon (poly, tree->partition, front_piece, back_piece);

o - back_list. AddTolList (back_piece);
BSPTree* BuildBSPTree(List polygons) front_list.AddTolist (front_piece);
{ break;

result = new BSPTree; }
result->root = BuildBSPTreeNode(polygons); }
It (polye ) tree->front = BuildBSPTreeNode (front_list);
| return result; tree->back = BuildBSPTreeNode (back_list);
}
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Hyperlpanes

e Ling, plane, ...

o Implicit representation for ¢~dimensional space:
3, X;+aX*t...d X 48, ;=0

e (g,a,...a;) —normal, representing also orientation
of hyperplane, defining inside or outside part

e Point test — sign od result after computation of
implicit representation with point coordinates

e Polygon test — comparing point test signs for each
vertex of polygon

e Splitting polygons— searching for intersection of
boundary segments with hyperplane
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BSP tree splitting techniques

e Auto-configuration — O(n2)

e Arbitrary splitting techniques, time complexity
computation: T(n)=n+2T(%+an) € 0(n'*’), 0<a <4,

— a = average count of polygons split in nodes « 005 02 04

e For each polygon, choose point- L
representative (barycenter, center of BB, ...)
and find hyperplane, that splits set of

representatlves into two subsets with same
count AN | s J
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Cost heuristics for split

e Computing quality cost of split
e Tree cost C(T)=1+P(T")C(T")+ P(T"C(T"),
— C — cost function, P — probability of visiting tree

— For example for point location(inside or outside
of object) P(T ) = Vol(T )/Vol(T), for raytracing
area of cell bounding subtree

e | ocal heuristics

— S — number of polygons, objects, s — split
objects count

CT=1+|S|*+|S* + Bs,
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Automatic subdivision

e Hyperplane defined by one of given polygons

e Choose large polygons

— Large polygons have higher probability to be split, so this
way remove it sooner from set of polygons

— For first k largest polygons, compute cost function C(T)
and choose polygon with lowest cost

e Random choose k polygons

— From k polygons, choose one that will create smallest
count of fragments

e Used constants for cost function computation
-a=08,..,095 B=1/4,.. 3/4
~-k=5
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BSP tree for raytracing

e Organizing tree based on specifics of geometric
search — for example rays emit from one point

* Cost of queries O i)« ftinralk
e We want to hit as less nodes as possible, polygons
with higher hit probability are places in higher in

tree hierarchy

e Probability of ray-polygon intersection:

— If the angle of ray direction and polygon normal is
smaller, probability is higher

— If the polygon is larger, probability id higher

. Area(p)
score(p) = JD w(S p, Do()dl, w(S p,1)=sin*(n,, rf)Area(S)’
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Self-organizing BSP trees

e If distribution of polygons is not known or cost
function is harder to compute

e Constructing only necessary parts of BSP tree

e Each node also holds info about currently unused
polygons, that were not used until now

e Remembering how many times node of tree was
visited, if counter is above limit, the node is
subdivided and new subtree of node created

e Computing also intersection count of ray and
polygons in unsplit node, this counter is later used
for choosing split hyperplane
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Visibility determination

Determine occluded parts of polygons in 3D scene

Painter algorithm — painting from background
towards front (polygons must be in simple
positions)

BSP — having partition of space, each hyperplane in
node splits space into two halves, half-space where
camera is positioned contains objects nearer to

camera, other half-space contains objects far from
camera

Always comparing split hyperplane with camera
position
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Visibility determinantion

void DrawBSPTree (BSP_tree *tree, point eye)

near {
if (tree == NULL) return;
polygons real result = tree->partition.ClassifyPoint (eye);
if (result > 0)
- {
g DrawBSPTree(tree->back, eye);
. ],' tree->polygons.DrawPolygons();
\t{ P i ."r DrawBSPTree(tree->front, eye);
5 olygons, }
. polygons,

else if (result < 0)

¥ / {
'——‘_’.—-—'—' . I.I'f DrawBSPTree(tree->front, eye);
N . tree->polygons.DrawPolygonlList();
DrawBSPTree (tree->back, eye);
/ }
' Ise
/ e
; {

// the eye point is on the partition plane...
g DrawBSPTree(tree->front, eye);
DrawBSPTree(tree->back, eye);
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Visibility determination

e Combination of several algorithms
e Bbackface culling
e Frustum culling

e Pixel rewriting in color buffer when rendering
— Rendering in front to back order

— Structure in screen space for remembering which
pixels were already filled — using 2D BSP tree

Geometric Structures 13




e Using blending (alpha-blending) in 3D

— Fragments of currently rendered polygon are
blended with color in framebuffer with some ratio

e Ordering of rendered polygons is needed
— Front-to-back order
— Back-to-front order

e Additive blending

>
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Objects representation

e Closed objects

e Border of objects defines subdivision
hyperplanes

e Representation used for point test
o Unappropriate for smooth surfaces
5
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Set operations on objects

e Crucial operations in geometric modeling
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e BSP tree representatlon - connectlng two
BSP trees

e Union, intersection, difference — in BSP
representation, difference only in elementary
leaf operations
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1. Part — BSP tree split

e For given BSP tree 7 and hyperplane H, create new
BSP tree 7, suchthat Ty =T HaT,* =T H*

e Hwill be new root

e Node 7 consists of (H,, p, T-, T7)
— H id split hyperplane
— pis polygon inside H

e Several configurations for hyperplane /in node 7
based on relative position of H and hyperplane in T

e Bounding volumes of each BSP tree node are
needed
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1. Part — BSP tree split

R(T) H

split-tree(T, H, P)
{
/P =HnR(T)}
// R(T) — region of the cell of node T (it is convex)
case Tis a leaf:
return (H, T, T);
case “anti-parallel” and “on” :
return (H, T+,T")
case “pos./pos.” :
(T*1, T+2) = split-tree(T*, H, P);
Tt = (Hy py T, TH);
T2 = T+2;
return (H, T3, T2);
case “mixed” :
(T*1, T+2) = split-tree(T*, H, P N R(T*));
(T-1,T-2) = split-tree(T-, H, P N R(T7));
Tt=(H, p; N H-, T, T*);
T2 = (H,, p; N HY, T2, T*2);
return (H, T, T2);

+ analogic cases

pos./pos. mixed
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2. Part — BSP trees connection

e For given 2 BSP trees, concatenate it into
one by inserting hyperplanes from first
inside second

o If C are sets of elementary cell of i-th tree
(represented by leafs of trees), then

resulting tree T5 has leaf cells:
Cs={ciNcalci€Cicy €CyciNey # D)

st pommene o : ; i / P e g
5 d - 1 5 5 \ | 5 n E
/"',-'"JH ".HH““"‘ s I"‘:;/Ha , x}>4<=
i g 4 \ o —>:/,/\ g, b =R 0 A St
—— ; —
/ —— \ e -~ e, \NL
n 'd '
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2. Part — BSP trees connection

merge(T,, T,) > T,
{ Operation T, Result
if (T, or T, is a leaf)
{ U in Tl

perform the cell-op as required by the Boolean

operation to be constructed
} ’ out T2
(T,*, T,) = split-tree(T,, H,, ...);
’ . out T
T, =merge (T, T,); 1
+=|,.ner-ge (T+ T+) .
3 1220 c
T,=(H, T3, T,%) \ In T,
return T;
} out T,
} .
- In T,°
split merge merge ® 2
- ) - //// -~ n" “_" -
cell-op, T, is leaf

- -
- -~
- -
- -
>

combine
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Collision detection

e Checking intersection between nodes of two
BSP trees

e Similar to raytracing algorithm

o Computation of hyperplanes intersections
between cells

e When checking for collision of camera and
object, computing intersection of segment
and BSP tree
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Shadow volumes

e BSP tree storing polygons of shadow volume

e Determination if given surface point is inside
shadow volume = is in shadow
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Shadow volumes

e Algorithm

— From light position, find all silhouette edges of
objects casting shadows

— Each silhouette edge expand in the direction of
light, creating polygons of shadow volumes

— Create BSP tree for boundary polygons of
shadow volumes

— For any point in scene, find leaf node where it is
positioned and read shadow information

— Can be used stencil buffer instead of BSP tree
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Dynamic scenes

e Dynamic objects are reinserted into BSP tree
each frame

e Usually dynamic objects are represented as
points and rendered before static objects

e Inserting one point is much faster than
whole object with all boundary polygons

e Another option is to insert hyperplane
perpendicular to view direction
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