
Geometric Data Structures

Michael T� Goodrich Kumar Ramaiyer

Center for Geometric Computing Informix Software� Inc�
Dept� of Computer Science ����� Broadway�

Johns Hopkins Univ� Suite ����
Baltimore� MD ����� Oakland� CA ����	
goodrich�cs�jhu�edu rk�informix�com

�This research supported by the NSF under Grant CCR��������� and by ARO under
grant DAAH������	���	
� Author�s home page
 http���www�cs�jhu�edu�goodrich��

yThis research supported by the NSF under Grant CCR��
������ and by ARO under
grant DAAH������	���	
� Author�s home page
 http���www�cs�jhu�edu�grad�kumar��



Chapter �

Geometric Data Structures

��� Introduction

Computational geometry problems often require preprocessing geometric
objects into a simple and space
e�cient structure so that the opera

tions on the geometric objects can be performed repeatedly in an e�

cient manner� We refer to this as the �geometric data structuring
 ap

proach� This approach has been widely used by several researchers to
design very elegant data structures to solve a number of geometry prob

lems ���� ��� ��� ��� ��� ��� ��� ��� ��� ����

Classic data structures like lists� trees� and graphs are by themselves not
su�cient to represent geometric objects as either they are generally one di

mensional in nature or do not capture the rich structural properties of the
geometric objects in the domain� For example� in a planar subdivision the
clockwise and counter
clockwise orderings of edges around a vertex are of

ten useful for solving many problems involving subdivisions �e�g� see Guibas
and Stol� ������ Similarly� facial ordering and connectivity information of
subdivisions is often needed and requires special representation� If one is
given a collection of horizontal segments in IR�� for example� one may like
to represent the endpoints� and also some representation of the �aboveness

partial order �e�g�� see Edesbrunner ������ Higher dimensional geometric
objects de�ne even richer relationships and likewise cannot be easily rep

resented by the classical data structures� and require careful study� Even
with this short list of examples one can see that geometric data requires
the representation of relationships that cannot be represented using strictly
numeric or combinatoric data structures� Indeed� it is the interplay of nu


�
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meric and combinatoric data that makes the design of e�cient geometric
data structures an interesting and challenging research domain�

����� Problem classi�cation and goals

Data structuring problems involving geometric objects vary and are often
classi�ed as follows�

Static� In this case all the geometric objects in the problem domain are given
as part of the input�

Online� In this case new geometric objects are allowed to be added to the
problem domain� but cannot be deleted�

Dynamic� In this most general case new geometric objects are allowed to be added
and some existing objects are allowed to be deleted from the problem
domain�

In addition� data structures used for storing geometric objects should ideally
achieve all of the following goals�

� capture structural information�

� allow for e�cient query processing�

� allow for e�cient updates�

� optimize the space required� and

� store objects e�ciently so as to minimize the number of I�O accesses�
when the input size is very large�

����� Chapter outline

In this chapter we review and highlight research on geometric data struc

tures� describing important examples for each of the above problem classi�c

ations� In each case we review we sketch how well it achieves the basic goals
of geometric data structure design� In the next section we describe methods
for representing embedded straight line graphs� which arise in a number of
computational geometry contexts� including the construction and mainten

ance of fundamental geometric structures� including convex hulls� Voronoi
diagrams� Delaunay triangulations� and arrangements� In Section ��� we re

view several methods for performing an important search operation in such
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subdivisions�the point location search� and we give a short review of dy

namic methods for solving this problem in Section ���� In Section ��� we
discuss some methods for representing convexity� and in Section ��� we de

scribe some data structures for representing data that is rectilinear �i�e��
aligned with the coordinate axes�� Finally� in Section ��	 we discuss some
general techniques for designing geometric data structures�

Since geometric data structures are fundamental in the design and im

plementation of geometric computations� there are a necessarily a number of
interesting geometric data structures that we will not be discussing in this
chapter� Fortunately� many of these are covered in chapters by others in this
collection� In particular� Nievergelt and Widmayer discuss a number of spa

tial and rectilinear structures for higher
dimensional spaces in Chapter ���
In addition� general techniques for designing randomized geometric data
structures are covered in the chapters by Matou�sek �Chap� ��� and Mul

muley �Chap� ���� Data structures for shortest paths and ray shooting are
discussed by Hershberger and Suri in Chapter �� as well as by Maheshwari
and Sack in Chapter ��� In addition� Urrutia discusses the important and re

lated visibility graph structure in Chapter ��� An interesting variation of the
data structuring problem is covered by Smid in Chapter �� and by Mitchell
in Chapter ��� where one is allowed to answer queries approximately� There
are also a host of interesting data structures that are based upon �
nets
and spanning trees with low stabbing numbers� which are topics covered by
Matou�sek in Chapter �� and by Agarwal and Sharir in Chapter ��� Finally�
fundamental to the issue of geometric representations is the issue of numeric
stability� which is covered by Yap in Chapter ���

We highlight in the following sections various geometric data structures
and we also discern some of the general principles behind data structure
design for geometric structures�

��� Embedded Planar Graphs

A graph G � �V�E� is said to be embedded in a surface S when it is drawn
on S so that no two edges intersect� A graph is planar if it can be embedded
in the plane� a plane graph has already been embedded in the plane �����
in which case it makes sense to de�ne the set F of faces of G� A planar
graph can always be embedded in the plane so that all its edges are straight

line segments ��	� and such an embedded graph is called planar straight line
graph �PSLG��
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The planar graphs play an important role in many two
dimensional com

putational geometry problems� for an embedded planar graph represents a
planar subdivision� which is a structure that arises in several useful applica

tions� including include arrangements of lines� Voronoi diagrams� Delaunay
triangulations� and general triangulations�

A measure of the usefulness of an embedded graph representation is that
such a representation should allow for e�cient traversal of edges around a
vertex �in clockwise and counter
clockwise direction�� and it should allow for
the e�cient access of all edges bounding a face and all the faces incident on a
vertex� In addition� it is very important for such a representation to preserve
the topology of the embedding of the planar graph� as a given planar graph
may have several embeddings�

Once the embedding of a planar graph is given in the form of a planar
straight line graph� one of the simplest representation is to represent the
graph as a collection of simple polygons� This representation is not �exible
enough for traversal� however� Representations for embedded planar graphs
that do allow for e�cient traversals include the doubly connected edge list or
DCEL ��	�� the winged
edge structure ���� and the quad
edge structure �����
Let us therefore review each of these representations�

����� The Doubly Connected Edge List �DCEL�

Muller and Preparata ���� �	� designed a PSLG representation� which they
called the doubly
connected edge list �or DCEL�� The DCEL for a PSLG
G � �V�E�F � has a collection of edge nodes� This representation treats
each edge as a directed edge� hence� it imposes an orientation on each edge�
Each edge node e � �va� vb� is a structure consisting of six �elds�

� Vo� representing the origin vertex �va��

� Vd� representing the destination vertex �vb��

� Fl� representing the left face as we traverse on e from Vo to Vd�

� Fr� representing the right face as we traverse on e from Vo to Vd�

� CCWo� representing the counter
clockwise successor of e around Vo�
and

� CCWd� representing the counter
clockwise successor of e around Vd�
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Figure ���� A DCEL Representation of an Embedded Planar Graph�
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Figure ���� A Winged
edge Representation of an Embedded Planar Graph�

The �gure ��� shows the DCEL representation of the edge e� in the subdi

vision given�

From the DCEL representation in linear time one can easily extract the
edges around faces �in clockwise
order� and the edges around a vertex �in
counter
clockwise order�� To get the other ordering information e�ciently�
however� one needs to duplicate the edges of the PSLG with opposite orient

ations from their original orientations and store a DCEL for this orientation
as well� Once edges are duplicated and oriented in the opposite direction�
one can access the edges bounding a face in counter
clockwise direction and
edges around a vertex in clockwise direction in linear time� The total size of
the DCEL representation is O�jV j� jF j� jEj��

����� The Winged�Edge Representation

The winged
edge representation was proposed by Baumgart ��� and is similar
to the DCEL� Given a PSLG G � �V�E�F �� the winged
edge representation
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stores an array for the vertices� This array stores for each vertex an arbitrary
edge incident on that vertex� The winged
edge representation also stores an
array for faces� which stores for each face an arbitrary edge bounding that
face� For each edge e � �va� vb� it stores the following information�

� Vo� representing the origin vertex �va��

� Vd� representing the destination vertex �vb��

� Fl� representing the left face as seen from Vo to Vd�

� Fr� representing the right face as seen from Vo to Vd�

� CWo� representing the clockwise successor of e around Vo�

� CCWo� representing the counter
clockwise successor of e around Vo�

� CWd� representing the clockwise successor of e around Vd� and

� CCWd� representing the counter
clockwise successor of e around Vd�

Thus four successor edges are stored for each edge� This allows one to do
all the accesses we outlined earlier as e�ciently as in a �double
orientation�
DCEL� Figure ��� shows the winged
edge representation for a PSLG� The
total storage needed for the winged
edge is O�jV j� jF j� jEj�� but the con

stant factor is slightly better than for a double
orientation DCEL�

����� The Quad�edge Representation

Guibas and Stol� ���� proposed the quad�edge representation for the embed�
ded planar graphs� Their structure is isomorphic to the winged
edge struc

ture� but it is given semantics general enough to represent an undirected
graph embedded in an arbitrary two
dimensional manifold� Their structure
also simultaneously represents the graph
theoretic primal and the dual of a
planar graph� Figure ��� shows an example representation� The total space
required for the quad
edge structure is O�jV j� jF j� jEj�� with the constants
being essentially the same is for the winged
edge represenation�

����� Well Known PSLGs

As a motivation for the use of these subdivision representation� let us brie�y
review some of the well
known geometric structures that are special cases of
PSLGs� These structures are treated in greater detail in other chapters of
this handbook�
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Figure ���� A Quad
Edge Representation of an Embedded Planar Graph�
The graph and the representation are shown� The thick edges are the edges
of the graph and the gray
dotted edges are the edges of the dual graph�

Line arrangements

Given a set of lines in the plane� the intersection of lines form a structure
that is referred to as the arrangement� This structure is a planar subdivision�
This is a very useful structure and has number of applications�

Since any two non
parallel lines intersect� if the given set of n lines does
not contain any pair of parallel lines� then the number of intersections is
O�n�� and hence the size of arrangement is O�n��� There are algorithms for
computing the arrangement of lines in O�n�� time� which is of course optimal�
Figure ��� shows an example arrangement of lines� The arrangement is a
PSLG and can be represented using one of the data structures discussed in
the previous section�

Voronoi Diagrams and Delaunay Triangulations

Given a collection of points and a metric� say L�� one can de�ne a geomet

ric structure called the Voronoi diagram� This is a very useful geometric
structure for answering number of useful questions one can ask about a col

lection of points� including closest pairs and nearest neighbors� The Voronoi
diagram for a set of points is a PSLG� Each face in the graph contains an
unique point from the given set� Each face is a locus of points in the plane
which are closer to the point inside it� than any other point in the given set�

A related structure� the Delaunay triangulation� is the graph
theoretic
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Figure ���� Arrangements of Lines in a Plane�

Figure ���� The Voronoi Diagram and Delaunay Triangulation of a Point Set�
The thick edges represent the triangulation and the thin edges represent the
Voronoi diagram�
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planar dual of the Voronoi diagram in which the faces and vertices are inter

changed while preserving the incidence relationships �which forms a trian

gulation if the original points are in general position�� Figure ��� shows the
Voronoi diagram Both the Delaunay triangulation and the Voronoi diagram
have a wide variety of uses� and they are PSLG�s� We can therefore use one
of the above representations �DCEL� quad
edge� or winged
edge� to store
Voronoi diagrams and Delaunay triangulations� Interestingly� the quad
edge
representation has the added advantage of being able to simultaneously rep

resent both the Voronoi diagram and the Delaunay triangulation of a point
set using a single representation�

In the next section we study how to perform searches like point loca

tion or ray shooting in PSLG structures such as arrangements and Voronoi
diagrams�

��� Planar Point Location and Ray Shooting

The planar point location problem is one of the fundamental computational
geometry problems and has several applications� This problem has been
studied by several researchers ���� ��� ��� ��� ��� ��� ��� ���� and there are a
number of e�cient solutions�

The problem in its widely studied form is stated as follows�

Given a planar subdivision in the form of a PSLG �using one of
the representations discussed in the previous section�� preprocess
the subdivision and store it in a data structure so as to answer
queries of the form �given a query point p �nd the face of the
subdivision containing p
�

This query is typically answered by performing a vertical ray shooting query
from p� where one determines the �rst segment�s� in the PSLG hit by vertical
rays emanating out of p�

The important criteria for judging solutions to the point location problem
are the space occupied by the data structure and the query time it allows�
The preprocessing time is also an important criterion� but is generally not
considered as critical as the others� since it amounts to a one
time cost�

Variations of the problem as stated above include methods for special
types of subdivision i�e�� introducing constraints on the shapes of the faces
of the subdivision and the connectivity of the underlying planar graph� Dif

ferent subdivisions that have been studied over the years include general
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Figure ���� The Slab Method� Partitioning the Subdivision into Vertical
Slabs Consisting of Trapezoids�

subdivisions �which may not even be connected�� connected subdivisions�
monotone and convex subdivisions �where each face is respectively a mono

tone polygon or convex polygon�� and rectilinear subdivisions �where only
horizontal and vertical edges are used�� We outline below the various data
structures used for solving the point location problem�

����� The Slab Method

The �slab
 method proposed by Dobkin and Lipton ���� is historically the
�rst non
trivial method to solve the point location problem� and it is suitable
for the most general types of subdivisions� The idea is very simple� Since
general subdivisions can be of an arbitrary nature� their basic idea is to
partition the subdivision into a collection of vertical slabs so that each slab
contains only triangles and trapezoids�

The partition is done as follows� one draws vertical lines through each
of the vertices of the subdivision� This partitions the subdivision into O�n�
slabs� The slabs have the property that none of the edges inside the slab
cross each other and the edges either cross the vertical boundaries of the slab
or two or more edges meet at a vertex through which the vertical boundary
line of the slab passes through� Thus� each slab contains a collection of
triangles and trapezoids with vertical boundaries�

Dobkin and Lipton store this collection of slabs in a data structure to
perform point location as follows� the slabs are totally ordered left
to
right
by the x
coordinates of the vertices and hence can be stored using any bal

anced binary search tree structure� Call this search tree A� The edges within
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each slab are totally ordered by the �above
 relationship� i�e�� given a point
and the supporting line of an edge inside the slab� one can �nd out whether
the point is above or below the edge�� This total order relationship �in each
slab� can also be stored using a balanced binary search tree� Let us call the
collection of search trees for all the slabs as B�

The point location is done as follows� given a query point p � �x�� y���
we �rst use the x
coordinate of p i�e�� x� to identify the slab in which the
point lies in by doing a binary search in A� Once the slab is identi�ed�
the corresponding binary tree in B storing the trapezoids within the slab is
searched by performing �aboveness
 comparisons�

Summary�

Space� Since O�n� binary search trees �each of size O�n�� need to be stored
in B� the total space requirement is O�n���

Query Time� To locate a point we need to perform two binary searches�
and hence the query time complexity is O�logn��

����� The Trapezoid Method

The slab method was improved by Preparata ���� to achieve an O�logn�
query time method with only O�n logn� space� His method is commonly
referred to as the trapezoid method� and is in principle the same as slab
method as it also partitions the subdivisions into simple trapezoids� But
rather than drawing O�n� vertical lines� a recursive structure is built�

The method for constructing a point location data structure using the
trapezoid method is as follows� One inductively assumes one is given a
trapezoid � with vertical sides containing the subdivision �initially we can
use a bounding rectangle�� Identify in � the �spanning
 edges i�e�� the edges
which intersect both the vertical boundaries of � � If there are no spanning
edges� then partition � again vertically at the median vertex and recurse on
each side� If there are spanning edges� then paritition the slab into a number
of trapezoids using the spanning edges� i�e�� each trapezoid has a spanning
edge as its top and bottom boundaries and the vertical boundaries of the
slab as its two side boundaries� Then order these trapezoids by the �above


�This is the unit�time operation that is used in the complexity measure� This operation
can be implemented either by checking the point against the equation of the supporting
line or by checking whether the vertices of the edge e � �v�� v�� and the query point v�
make a �left turn� or �right turn� in the order v�� v�� and v��
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Figure ��	� Trapezoid Method� The vertical cuts are shown in the tree as
triangular nodes and the spanning cuts are shown as circular nodes�

relationship discussed in the previous section and recursively partition each
such non
trivial trapezoid�

Thus� one recursively partitions the subdivision� �rst vertically and then
using the spanning edges� The vertical cuts are global and can be organized
using a single binary search tree� The trapezoids within a container trapezoid
� are organized using a biased search tree ��� which has the property that the
depth of an item i with weight wi is O�logW�wi�� where W is the sum of
the weights of all the items in the tree� Each trapezoid is assigned a weight
proportional to the number of vertices within the trapezoid� Hence the
resulting structure storing the subdivision is a compound structure in which
the primary tree is a balanced binary search tree organizing the vertical cuts
and the secondary structure is a biased search tree storing the trapezoids�
The �gure ��	 shows an example subdivision and the resulting data structure�

The worst
case depth of a leaf node u in this compound structure is
calculated as follows� the depth in the primary structure is O�logn�� since
vertical cuts are always at median x
coordinates� Suppose the depths in
the di�erent levels of secondary structures from the leaf u �weight of u �
W� � �� to the root are O�logW��W��� O�logW��W��� � � � � O�logW�Wk��
These values form a telescoping sum that reduces to O�logW �� But the
total weight W at the root is O�n logn�� hence� the worst
case depth of a
leaf node in the compound structure is O�logn��
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Summary�

Space� O�n logn� as there are O�logn� levels and in each level� structures
of total size O�n� are stored�

Query Time� To locate a point we need to perform alternate binary
searches in the primary tree and the second tree� As argued above
this is bounded by O�logn��

����� The Chain Method

Lee and Preparata ���� introduced an alternative approach� Unlike the slab
method and the trapezoid method� which partition the subdivision into
trapezoids� their method partitions the subdivision into regions separated
by �chains
� A chain is a sequence of edges that either forms a cycle or a
path such that the end vertices belong to the boundary of the unbounded
region� This way the chain� whether it is a cycle or a path� partitions the
subdivision into two parts�

The method then is to �rst �nd a �median
 chain so as to partition the
subdivision into roughly two equal parts� Then recursively one �nds chains
in each of the subdivision to construct a �balanced tree
 of chains� The point
location method then proceeds by discriminating the point against the chain
at the root to �nd the partition containing the point and then recurses at
the appropriate child in the tree� The important work involved in searching
such a data structure is therefore the discrimination of a point against a
chain�

It is easy to see that discrimination of a point against a general chain
is as di�cult as point location in a simple polygon and hence is not really
any simpler� So Lee and Preparata restricted each chain to be monotone�
thus restricting their method to monotone subdivisions �which really is not
a big restriction� since we can convert a general subdivision to a monotone
subdivision by a vertical decomposition construction�� For any monotone
chain there exists a straight line such that the line orthogonal to the line
intersects the chain at most once� and this property can be exploited for
point location�

The �gure ��� shows the partition of a subdivision into monotone chains�
The edges are shared by di�erent chains� but the data structure stores only
one copy of each edge� Lee and Preparata�s point location data structure is a
compound data structure that has as its primary data structure a binary tree
with a separating chain associated with each vertex and the secondary data
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Figure ���� Chain Method� Parition of the subdivision into monotone chains
�with respect to y
axis��

structure storing the description of each chain� The primary and secondary
data structure are both balanced binary search trees� actually� During a
point location discrimination of a point versus a monotone chain is done
using the description of the chain in the secondary data structure� The
discrimination of point versus monotone chain �say with respect to vertical
line� is done in the obvious way� The projection of y
coordinates of the
vertices of the chain on the vertical line partition the line into intervals
which enables a binary search and the query point is located within one of
the intervals �so that the point can then be compared with the straight line
supporting the edge corresponding to the interval to �nd out which side of
the chain the point lies in�� Thus� each chain descrimination can be done in
O�logn� time�

Summary�

Space� Each edge belongs potentially to more than one chain� But by
storing each edge to the highest chain in the primary data structure to
which the edge belongs� the space required for the data structure can
be made to be O�n��

Query Time� The discrimination of a point with respect to a monotone
chain takes O�logn�� and the depth of the primary data structure is
O�logn�� Thus� point location takes O�log� n� time using the chain
method�

����� Improving the Chain Method via Fractional Cascading

Edelsbrunner� Guibas� and Stol� ���� propose an improvement to the chain
method using a technique called fractional cascading� This technique is ap

plicable in any general situation where there are repeated similar searches
along the nodes of a path in a directed graph in which the degree of each
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node is bounded by constant and the set of items searched in each node
are drawn from the same universe� Under these conditions one can do bet

ter than performing several independent binary searches� The list stored in
each node of the graph is augmented with extra elements from the lists in
the successors so as to correlate the searches in a node and its successors�

We now describe the fractional cascading technique and show how to
improve the chain method� In chain method� a sequence �O�logn�� of point

versus
monotone chain discriminations are performed� In each such discrim

ination� a search is performed using the same query point� but against dif

ferent chains� Moreover� the set of y
coordinates of the vertices of the edges
against with the comparison is made is a �xed set i�e�� the y
coordinates of
the vertices of the subdivision� Hence the conditions are favorable to apply
the fractional cascading technique�

In order to be concrete let us therefore review in detail how the fractional
cascading technique can be applied in this case� Consider a node u in the
primary structure with children v and w� Let Cu� Cv� and Cw be the chain
lists in the nodes u� v� and w respectively before augmentation� The problem
is to compute appropriate augmented lists Tu� Tv� and Tw lists in the nodes
u� v� and w respectively� We perform this augmentation bottom up� Assume
Tv and Tw are already constructed� For an appropriate constant d �d � �
works� for example�� we select every d
th element from Tv and Tw� respect

ively� and copy the elements to the list Cu to form the augmented list Tu�
These copied elements are referred to as bridge elements in Tu� Moreover
each element i in Tu stores additional pointers as follows�

Left Bridge �Pl�� Pointer to the closest bridge element �not to the left of
i� copied from left child�

Right Bridge �Pr�� Pointer to the closest bridge element �not to the left
of i� copied from right child�

Proper �Pp�� Pointer to the closest element from Cu not to the left of i�

Predecessor� Pointer to the predecessor element in Tu�

Bridge �Pb�� Pointer to the corresponding element in Tv or Tw �only for
elements copied into Cu��

The distance between two bridge elements in Tu is at most d� To perform
the search� we �rst do a binary search using the the given query point in
the list stored in the root to identify which child to search� Suppose we
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Figure ���� Fractional Cascading� Augmentation of list in a parent node
with elements from the lists in two children� The left bridge and right bridge
pointers for element �� are shown� Similarly the proper pointer for element
� is shown� Also the bridge pointers are shown�

need to search the left child� We then follow the Left Bridge pointer of the
successor element of the query point in the T list of root� From the Left
Bridge we follow the Bridge pointer to the T list of the left child� We then
use the Predecessor pointers to �nd the two elements in the T list of left
child which encompass the given query point� We select the successor and
then use the Proper pointer to identify the element in the C list so as to
perform comparisons for branching to next level�

The �gure ��� shows an example where the list at a parent node is aug

mented with elements from the lists in two children� Every fourth element
is copied from the child to the parent� For sake of exposition� we use lists of
integers�

The total number of pointers traversed for crossing one level is d � �
pointers i�e�� one Left Branch pointer� one Bridge pointer� at most d Prede�
cessor pointers� and one Proper pointer� Initial search takes O�logn� time
and the subsequence searches together take O�d logn� time � If d is chosen
as constant� then the total search time is O�logn��

Summary�

Space� Edelsbrunner� Guibas� and Stol� ���� show the total space require

ment is O�n� for an appropriate constant value of d�

Query Time� O�logn�� as argued above�
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The preprocessing time is O�n logn��

Subdivision Hierarchies

Historically� the method of Edelsbrunner� Guibas� and Stol� is not the �rst
to simultaneously achieve O�n� space and an O�logn� query time� Kirk

patrick ���� discovered earlier an elegant method� based upon a technique
we call the subdivision hierarchymethod� for performing point location� This
method is also applicable for searching in higher
dimensional structures and
is even amenable to parallelization ���� ��� ����

The method requires that the subdivision is triangulated and also that
the outer face is a triangle� The triangulation� however� can be done in linear
time using Chazelle�s method ���� if the original subdivision is connected�
The method then proceeds as follows�

�� Identify a maximal independent set in the PSLG representing the sub

division using a greedy heuristic with the condition that the degree of
vertices in the independent set is bounded by a constant c� Also the
independent set should not include any vertices of the outer face�

�� Remove the vertices of the independent set and the edges attached
to them� Retriangulate each of the star polygons which contain the
vertices of the independent set�

�� Repeat the process until only the outer face remains�

The �gure ���� shows the process of removal of independent set of vertices
and retriangulation for an example subdivision�

Now the point location data structure is constructed as follows� We have
a layered directed acylic graph in which one layer represents an intermediate
triangulation of the subdivision in the above recursive process� We assign
one node of the dag to each triangle� After removing the independent set
and retriangulating� some of the triangles are destroyed and new triangles
are introduced inside each star polygon� We introduce a node for each new
triangle and introduce pointers from the node representing the new triangle
to all the nodes representing the triangles which are destroyed within the star
polygon� In the limiting case we have one node representing the outer face
and three nodes representing the three triangles destroyed in the previous
step� The resulting data structure thus is a layered dag as shown in the
�gure �����

Kirkpatrick shows that in the layered dag�
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Figure ����� A Subdivision Hierarchy� The �gure shows removal of inde

pendent set and retriangulation� The indepedent set vertices selected at a
step are shown as hollow circles�

Figure ����� A Subdivision Hierarchy� Organizing triangles in a dag for
searching� The last three levels of a hierarchy are shown�
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� The degree of each node is constant� and

� A fraction of the vertices are removed at each step� Hence the total
depth of the dag is O�logn��

This follows from a theorem in graph theory which states that there are
�large
 independent sets of constant degree vertices in a planar graph� which
allows one to �nd maximal independent sets of size which is a fraction of the
current number of vertices�

The point location algorithm proceeds by �rst locating the point inside
the outer triangle� At any step in the search algorithm one has located the
query point in a triangle t on some level in the dag� One then follows the
pointers in the dag to search all the triangles in the next level that were
destroyed to form t� The query point can be located within the unique
triangle from among these candidates in O��� time� and this de�nes the
invariant for the next level� Since there are only O�logn� levels in the dag�
the point location takes O�logn� time�

Summary�

Space� The space occupied by the dag is O�n��

Query Time� O�logn� as argued above�

The preprocessing time is O�n� given the triangulated subdivision� as
it takes only constant time to retriangulate each star polygon� Indeed� us

ing Chazelle�s triangulation method ����� the preprocessing for Kirkpatrick�s
method can be implemented in linear time any time the original subdivision
is connected�

The Sweep Method and Persistence

There is actually one more well
known method for achieving O�logn�
time
queries and O�n� space for planar point location� In particular� Sarnak and
Tarjan ���� use the idea of persistence to build such a space
e�cient point
location data structure� Intuitively� they combine the techniques of the
slab method� plane sweeping� and persistence to build a very elegant point
location data structure� A similar method was also discovered by Cole �����

A persistent data structure allows one to perform updates and queries�
Updates must be performed on the most recent version of the data struc

ture �in so
called partial persistence�� but the queries can be done on past
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versions� i�e�� any previous version of the data structure that was modi�ed
by updates�

Sarnak and Tarjan ���� modi�ed the slab method as follows� given a
subdivision construct slabs by dropping vertical lines through each of the
vertices� Now perform a plane sweeping from the left most slab to the right
most� The event points for the sweep are the vertices of the subdivision� A
search structure is built for the edges within each slab which is maintained
during the sweep� The structure changes at each event point with the inser

tion and deletion of edges� Sarnak and Tarjan ���� interpreted these changes
at the event points as persistent updates� As a result they maintain a single
persistent structure during the sweep which is updated at every event point�

This persistent structure need be only partially persistent as updates oc

cur only on the latest version during the sweep� The point location query is
then performed as follows� using the x
coordinate of the query point the ap

propriate version of the persistent structure �slab� is identi�ed for searching�
Then a persistent search is performed on the corresponding �past
 version
to identify the face� By implementing the sweep using a partially
persistent
red
black tree� Sarnak and Tarjan show how to construct an O�n� space
data structure that allows O�logn� time persistent searches and updates�
Moreover� they show that each update adds only O��� amortized
space to
the data structure�

Summary�

Space� The space occupied by the persistent structure is O�n�� since there
are O�n� updates and each requires O��� amortized space�

Query Time� O�logn�� as mentioned above�

��� Dynamic Point Location

An important variant of the point location problem is to allow for environ

ments that request incremental updates to the subdivision� In this variant
one studies how to best re�ect the changes to the subdivision �e�g�� deletion
and insertion of edges or vertices� in the data structure storing the subdivi

sion� The goal� of course� is to continue to e�ciently support point location
queries while also also performing updates in an e�cient manner� In addi

tion� the space required by the data structure should be kept as small as
possible� In this section we review some dynamic data structures used for
performing dynamic planar point location� where edges are allowed to be
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inserted or deleted from a subdivision� The goal here is to e�ciently main

tain the data structure under the update operations and allow for fast point
location queries�

The basic problems in performing updates are the following�

�� Propagation of new information or modi�cation of old information
e�ciently� Suppose one is deleting an edge� If the edge is represented
in several nodes of the data structure� then one needs to remove that
information from all the nodes� For example in the slab method� if an
edge spans multiple slabs� then one needs to remove that information
from each of the binary trees storing that edge� A reverse problem
occurs when such a long edge is inserted into the subdivision�

�� Restructuring of the data structure to maintain the invariants assumed
by the algorithm� For example in the trapezoid method� we have the
invariant that each node represents a trapezoid and adjacent nodes
are separated by a �spanning edge
� Suppose a spanning edge is de

leted� Then the two adjacent trapezoids �which are represented as two
di�erent nodes� must now be collapsed into a single trapezoid and rep

resented by a single node� Similarly if a new spanning edge is inserted�
then the corresponding node must be split into two di�erent nodes�

�� Dynamization of the techniques �fractional cascading� persistence� etc��
used to achieve good space bounds�

Preparata and Tamassia ���� present a method for dynamic point location
in a convex subdivision� They construct the data structure by dynamizing
the structure used in the static trapezoid method� They put a restriction
that the vertices lie on a �xed set of N horizontal lines� however� The data
structure in this case uses space O�N logN�� Still� they achieve an impressive
time of O�logn � logN� for queries and an update time of O�logn logN��
The data structure consists of a primary component that is any balanced
binary search tree and the secondary component that is a biased binary
search trees ����

Preparata and Tamassia ���� also dynamized the chain
method for per

forming point location on a monotone subdivision� They construct a data
structure that allows for insertion and deletion of vertices� insertion and de

letion of monotone chain of edges� and point location queries� The update
operation is required to leave the subdivision monotone� They achieve an
O�log� n� query time� O�logn� time for inserting or deleting a vertex� and
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O�log� n�k� time for inserting or deleting a monotone chain of k edges� The
space requirement is O�n��

Chiang and Tamassia ���� later improved the above results for dynamic
point location in a monotone subdivision� They further dynamized the
trapezoid method to achieve O�logn� time for queries and O�log� n� time
for updates� The space required for the data structure is O�n logn�� Their
data structure is a compound structure with the primary component being
a BB��� tree ���� ��� ��� and the secondary component being biased binary
search trees ����

Mehlhorn and N�aher ���� dynamize fractional cascading to support
insertions and deletions in O�log log n� amortized time and queries in
O�logn � k log logn�� where k is the length of the path traversed� Hence
their dynamization adds a O�log logn� overhead to the static method� Dietz
and Raman ��	� improve the update time from amortized to worst
case�

Cheng and Janardan ���� present methods for dynamic point location for
any connected subdivision� They have two schemes� In one scheme� they
achieve an O�log� n� query time� O�logn� time for insertion and deletion of
vertices� and O�k log�n � k�� and O�k logn� times for insertion and dele

tion� respectively� of an arbitrary k
edge chain inside a region� The space
requirement is O�n�� In their other scheme they speedup the insertion and
deletion of k
edge monotone chain to O�log� n log log n�k�� but increase the
other bounds slightly� Their general approach is based on the a new search
strategy using priority search trees ��	� taken together with the technique of
dynamization as proposed by Willard and Lueker ���� ��� and Overmars �����
The main idea of this technique is that rather than updating the data struc

ture immediately with each update request they perform only local updates
and spread the restructuring over a sequence of future operations� They per

form global rebuilding of the entire data structure periodically so that the
structure does not go out balance too much� They also make use of BB���
trees�

Goodrich and Tamassia ���� present a method for dynamic method for
point location in monotone subdivisions� They improve the update times
by paying a penalty on the query time� In particular� they achieve O�logn�
time for insertion and deletion of vertices� O�logn� k� for the insertion and
deletion of a monotone chain of k edges� and O�log� n� time for queries� The
space requirement is O�n�� Their data structure consists of two inter
laced
spanning trees� each of which is represented using link
cut trees ����� In
order to be concrete about one dynamic point location method� we brie�y
review their method�
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����� The Inter�laced Trees Technique

Let S be a PSLG that is connected and monotone �and will remain that way
throughout the update process�� Goodrich and Tamassia ���� �rst construct
a spanning tree T for the triangulation with the property that its root
to

leaf paths are monotone with respect to the y
axis� Then they construct a
graph
theoritic dual of the triangulation such that it excludes the edges dual
to the monotone spanning tree constructed above� This de�nes the spanning
tree D for the dual graph of S� and these two trees �inter
lace�


Each node of D represents a triangle of S and each edge ofD corresponds
to non
tree edge of S� with respect to T �since edges dual to edges of T are
ignored while constructing D�� and hence determines a unique cycle in S�
Moreover this cycle partitions S into two regions� one inside the cycle and
the other outside the cycle� This property allows one to perform searching
the subdivision where we need to do point
versus
cycle discrimination�

The main idea behind point location is as follows� since each edge of D
represents a cycle of S� it partitions S into two regions� Given a query point�
we can compare it against the edges of the cycle to determine whether it is
inside or outside the cycle in O�logn� time� since T is monotone� Depending
on this test� we proceed to an appropriate edge of D which is either inside
or outside the cycle of S for further discrimination�

To perform such a search e�ciently� one needs to balance the treeD� The
authors use the link
cut tree data structure ���� to be able to implement a
recursive centroid search ���� ��� in D to eliminate a constant fraction of the
triangular faces with each cycle test� This allows one to perform searches in
O�log� n� time since the depth of the centroid decomposition tree is O�logn�
and in each step one needs to perform an O�logn� 
time point
versus
chain
discrimination�

Summary�

Space� The space occupied by the structure is O�n� �again from fractional
cascading method��

Query Time� O�log� n�� as mentioned above�

Update Time� The authors show how to use link
cut tree primitives to
implement updates in O�logn� time�
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��� Convex Hulls and Convex Polytopes

Convex hulls and convex polytopes are fundamental geometric data struc

tures and have been well studied� In this section we discuss the data struc

ture representations of convex hulls and polytopes and also how they are
maintained dynamically when the points are inserted and deleted�

��	�� d�Dimensional Representations

Given a collection of points in d
dimension� where d is a �xed constant�
there are algorithms �both randomized and deterministic� for computing
the convex hull of the points in this collection� Alternately� some of the
algorithms exploit the duality between a point and a hyperplane in d dimen

sions� and compute the intersection of a collection of halfspaces determined
by the origin and a set of hyperplanes� which by this duality directly gives
the information about the convex hull of the input set of �primal� points�

A convex polytope is represented by the information about faces� edges�
and vertices and the relationship between them� Each face of the convex
polytope is a convex set� The �d � ��
dimensional faces of a d
dimensional
polytope are called facets� its �d� ��
 and lower dimensional faces are called
subfacets� its one
dimensional faces are edges� and its zero
dimensional faces
are vertices� In a convex polytope arises from a convex hull computation�
then each vertex is a point in the input set�

A d
dimensional convex polytope is represented generally using an incid�
ence graph ����� Dobkin and Laszlo ���� de�ne such a representation for �

dimensional convex polytopes and Brisson ���� extends this to d
dimensional
convex polytopes� for �xed d � �� In addition to the above de�tions� we
refer to the �d � ��
dimensional face as a ridge� In the incidence graph� for
�� � k � d� �� a k
face f and a �k���
face g are incident upon each other
if f belongs to the boundary of g� In this case� f is called the subface of g
and g is called the super face of f �

��	�� ��dimensional Dynamic Maintenance

Let us now consider the problem of maintaining a convex hull of points in the
plane when the underlying point set changes� The online problem� where the
points are only allowed to be inserted� is easier than the dynamic problem�
where one allows deletion of points as well� In the online case the convex
hull can only expand in area� If a new point is determined to fall inside the
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existing convex hull� then one does not need to do any additional work� But
if the point falls outside� then one must compute the tangets from the new
point to the current convex hull� These tangents are added to the convex
hull and the chain of points on the convex hull between the two tangents
are deleted� This can be done in amortized O�logn� time� where n is the
number of points on the convex hull� as shown by Preparata �����

When the deletion of points is allowed things get more complicated�
since one needs to maintain convexity information about points that are
not currently on the convex hull� Overmars and van Leeuwen ���� present
an elegant solution to this problem� They maintain the convex hull as an
union of two monotone chains�the upper and lower hulls�partitioned at
the point with largest and smallest x
coordinate� respectively� Each hull is
then maintained as a compound tree structure� where each internal node
stores the convex hull of the points in the subtree and the parent node
adds the supporting tangent to the convex hull stored at its two children
to maintain the convex hull of all the points in its subtree� The insert and
delete operations work to modify these lists at the nodes appropriately� They
show that the update operations take O�log� n� time �where n is the current
number of points in the set�� while the query operation of asking for the
current convex hull involvex just reading the list from the root of the tree�
In addition� they show that one can still perform tangent queries in O�logn�
time�

��	�� ��dimensional Subdivision Hierarchies

Representing �
dimensional convex polytopes is considerably harder� We
know of no e�cient dynamic schemes� for example� Still� Dobkin and Kirk

patrick ���� ��� present an beautiful static data structure for representing
�
dimensional convex polyhedra so as to answer tangent and intersection
queries quickly� Their structure is based upon the subdivision hierarchies
technique introduced earlier �in Section ������� They form a hierarchy by
�rst identifying a relatively large independent set of vertices of at most con

stant degree �viewing the edges of the polyedron as a graph�� They then
remove these vertices and form the convex hull of those that remain� while
forming pointers between the new facets formed and the vertex in the pre

vious level that was deleted to give rise to these new facets� They then
recursively repeat this process� terminating this construction when the poly

hedron has constant size� Interestingly� they show that this simple approach
can be used to answer a number of types of tangent and intersection quer
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ies on the original polyhedron in O�logn� time� where n is the number of
vertices�

��� Rectilinear Data Structures

Having reviewed some data structures for maintaining convexity inform

ation� let us now consider the organization of geometric objects so as to
enable �rectilinear
 types of searching� In particular� we brie�y review in
this section methods that partition and query the space occupied by the
underlying geometric objects using axis
parellel hyperplanes� For a more

complete description of these techniques� the reader is referred to the chapter
by Nievergelt and Widmayer ���

��
�� k�D Trees and Quad Trees

First we consider two rectilinear data structures namely� the k
D tree ���
�� 	� and the quad
tree ���� ���� We now brie�y describe the two types of
partitions used to build these structures� We discuss the partitioning for
point sets in d
dimensions� The method can be extended for other types of
geometric objects in a straightforward way�

In the case of the k
D tree�� we �rst compute the median of the point
set in one of the dimensions� say D� and paritition the point set into two
sets based on the median point� i�e�� all points having coordinates less than
the median point along D� are placed in one set and the remaining points
are placed in the other set� This process is then recursively continued along
the other dimensions in the two resulting regions� Once the partitioning
is completed along all dimensions� it is repeated starting from D� in the
resulting regions� If the number of points in a particular region falls below
a certain constant� the process is terminated for that region� These regions
with boundaries parallel to the axes are organized in the form of tree with
partitioning of a region into two smaller regions along an axis representing
the parent
child relationship�

In the case of the quad
tree� the bounding box of the point set is par

titioned into �d regions by using axis
parellel hyperplanes passing through
the mid point of each of the sides of the bounding box� The partitioning
is continued recursively in each of the resulting regions until the number of

�The phrase means k�dimensional or multidimensional binary search tree� but we use
d to denote the dimension to be consistent with other sections�
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points falls below a certain constant� These regions are then organized in
the form of a multi
ary tree�

The k
D tree and quad tree occupy linear space and the performance
of the search operations depends on the application� but is in general not
optimal�

The search algorithms proceed by intersecting the search volume with
the bounding box of the region at the root node and recursively searching
the regions in the children nodes whose bounding boxes intersect the search
volume�

��
�� Segment Trees

Given a set of n segments in the plane� a segment tree ��� allows for e�cient
storage and searching operations on the underlying set� The x
coordinates of
the segment endpoints are projected onto the real line so as to partition the
line into several intervals �if the endpoints are in general position� there will
be �n�� intervals�� These intervals are then organized in the form of a tree
structure� The intervals represent the leaf nodes of the tree� Each internal
node represents an interval that is the union of all intervals in the leaf nodes
in the subtree� We store a �cover list
 of segments at each internal node
�typically sorted by the �above
 relationship�� Formally we say a segment
covers a node u if it spans interval at u and does not span the interval at
the parent of u� One can show that a segment is stored in the cover lists of
at most two nodes in each level and also in at most O�logn� di�erent nodes�
where n is the number of segments� A query operation� such as �nding all
the segments stabbed by a vertical query ray� can be answered by searching
the cover list at each level and proceeding down the tree� The segment
tree requires O�n logn� space and the vertical ray
intersection query can be
answered in O�logn� k� time� where k is the output size�

��
�� Range Trees

Range trees allow for e�cient storage of point sets for rectangle range search

ing� Given a set of n points in plane� for example� the �
dimensional range
tree is constructed as a compound tree structure� The primary tree structure
is constructed as a balanced binary search tree structure on the x
coordinates
of the points� Each node in the primary tree structure represents an interval
in the x
axis� We associate with each internal node all the points within its
interval and organize those points in the form of a search tree� but ordered
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using their y
coordinates� To perform a range search� one �rst searches the
primary tree and locates the two intervals in the leaf nodes containing the
bounding x
values of the query range� Then we walk up the tree to the
least common ancestor of the two leaves and along the path we search the
secondary structure stored in the nodes which are siblings �nodes not on the
path� for the points which are within the range in the y
axis�

The space occupied by the range tree is O�n logn� since there O�logn�
levels each containing O�n� nodes� The complexity of range search is
O�log� n�k�� where k is the output size� This can be improved toO�logn�k�
by using techniques like fractional cascading�

��� General Techniques

In this section we brie�y outline the some of the transformation and con

struction techniques used for improving the performance of the searches and
updates on a data structure�

����� Fractional Cascading

As mentioned earlier� fractional cascading ���� �	� is a very powerful data
structure transformation technique that can improve the query performance
of the data structures� We outlined the method in detail in Section ������
Given a graph
based data structure consisting of nodes of bounded degree
in which search operations proceed along a path in the graph and compare
the information stored in each node of the path with the �same
 key� one
can improve the performance by augmenting the information stored in each
node� This will eliminate the need for independent searches in each node
and will make the searches dependent� One important restriction is that all
the information stored must be from the same universal set�

����� Persistence

The data structures we study normally are ephemeral in nature� i�e�� once
the updates are done on the structures the previous information is lost�
The persistent data structure maintains information about the past versions�
This allows one to perform queries in the past� Such structures are called
partially persistent structures� Sometimes one would like to allow for updates
in the past versions� This becomes quite complicated as an update to one
of the past version creates a new chain of data structures� We refer the
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reader to an excellent paper by Driscoll et� al� ���� for complete details for
how to make structures persistent� Such structures are referred to as fully
persistent structures� As showed in Section ������ the persistent structures
can maintain the information during a plane sweep in a simple way which
provides for e�cient planar point location algorithm�

����� Static to Dynamic Conversions

Bentley and Saxe ���� �� propose general techniques for coverting static data
structures to be dynamic� They considered a class of problems called decom�
posable searching problems and presented general techniques for converting
static data structures to dynamic� The decomposable searching problems
have the property that one can decompose a query about the complete set
of objects into queries involving subset of objects and combining the results
in a certain way to obtain the solution for the original query� These have ap

plications to problems like membership querying� nearest neighbor querying�
fathest point querying� and intersection querying�

The transformations to online structures �i�e�� ones that allow only in

sertions� is to maintain a collection of static structures of appropriate size
and merge them to build large structures periodically� The size and time at
which new structures are built are determined typically based on geometric
progressions� such as powers
of
twos or a Fibonacci series� When deletions
are allowed they advocate the use of a shadow structure where the deleted
elements are maintained� One can then answer queries by searching both
the shadow and the actual structures�

Overmars ���� introduced another class called order decomposable set
problems and he presented general techniques for dynamizations� This is
a generalization of the method of Overmars and van Leeuwen ���� for dy

namic maintenance of convex hull of planar point set� This technique has
applications in maintenance of the contour of maximal elements of a two

dimensional point set� maintenance of the intersection of a set of halfspaces
in the plane� etc�

����� Internal�Memory to External�Memory Conversions

When the input data to a given problem is huge� one would like to design
algorithms that optimize the number of I�O accesses� Because of the or

der of magnitude di�erence in the access times between disks and internal
memory� algorithms dealing with large inputs should pay more attention
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to the organization of the underlying data structure so as to minimize the
number of disk accesses� The main task in external memory organization of
a data structure involves determining which substructures share the same
block or page in the disk� The blocking of the nodes of the internal memory
data structure is very crucial and di�erent blocking schemes lead to di�erent
space requirement and di�erent I�O performance of the query algorithms�

Goodrich et� al� ���� present external memory techniques for solving com

putational geometry problems dealing with large inputs� They presented four
general techniques and showed how they can be applied to obtain e�cient
external memory algorithms for problems� like computing the pairwise in

tersection of orthogonal segments� constructing the �
d and �
d convex hull
of points� answering batched range queries on points� point location queries
on the planar subdivision� �nding all nearest neighbors� etc�

There are several other works related to external memory computational
geometry� We refer the reader to some of the recent papers on this topic ���
��� ��� ��� ���� In addition� we highlight a recent paper by Arge ���� where
he introduces a general technique� based on a data structure he calls the
bu�er tree� for converting certain types of internal memory computations
into e�cient external memory computations�
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