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Abstract

Design solutions for a program library are presented for combinato-
rial data structures in computational geometry, such as planar rnaps
and polyhedral surfaces. Design issues considered are genericity,
flexibility, time and space efficiency, and ease-of-use. We focus
on topological aspects of polyhedral surfaces. Edge-based repre-
sentations for polyhedrons are evaluated with respect to the design
woals. A design for polyhedral surfaces in a halfedge data structure
is developed following the generic programming paradigm known
tfrom the Standard Template Library STL for C++. Connections
are shown to planar maps and face-based structures managing holes
in facets,

1 Ilatroduction

Combinatorial structures, such as planar maps, are fundamental in
computational geometry. In order to use computational geometry
in practice, a solid library must provide generic and flexible solu-
tions as one of its fundamental cornerstones. Other design criteria
are time and space efficiency. Ease-of-use is necessary to make
the power of a design accessible and to attract users. We repott a
solution proposed for the Computational Geometry Algorithms Li-
brary CGALY, which is a joint effort of seven academic institutes in
Europe [7, 6, 27].

We focus on edge-based representations of three-dimensional
polyhedral surfaces and illustrate connections to planar maps and
face-based structures, which may have holes in their facets. We
concentrate on the topological aspects and derive solutions appli-
cable to other data structures as well. In particular, we want to vary
the internal storage organization and the kind of incidences that are
actually stored. Additional user data can be integrated easily. A
top-level interface ensures ease-of-use and combinatorial integrity.
On the other hand, a protected access to the internal representation
is granted.
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Figure 1: Hammerhead, an orientable 2-manifold of 2560 vertices.
This one is homeomorphic to a sphere.

In the first part of the paper we define polyhedral surtfaccs and
review known edge-based boundary representations. In the second
part we start with a short introduction to the modern design prin-
ciples available in C++ and known as the generic programming
paradigm from the Standard Terplate Library, STL [4, 25, 29].
We derive design goals and evaluate previous work, We continue
with an overview of our design, present several aspects in more
detail and conclude with its evaluation. The two main advantages
of our design are: The flexibility is completely handled at compile
time, i.e. there is no runtime overhead due to the flexibility, and
memory is only allocated for the features actually used. For exam-
ple, a polyhedron with no information in facets does not allecate
facet nodes and facet pointers at all.

2 Polyhedral Surfaces

A boundary representation of a polyhedral surface consists of a set
of vertices V, a set of edges FE, a set of facets F* and an incidence
relation on them. Introductions can be found in [13, 21]1. Fora
living example see Figure 1.

The two types of boundary representations are 2-manifold and
non-manifold surfaces. A 2-manifold surface is a surface where
for each point on the surface there exists a neighborhood that is
homeomorphic to the open disc. Non-manifold examples are two
tetrahedrons glued together at a single vertex or a common edge.
The next distinction is between orientable and non-orientable 2-
manifold surfaces. Without going into details, a surtace is ori-
entable if a consistent orientation can be assigned to each facet
such that for each edge the two incident facets have opposite nrien-
tations at this edge. An example of a non-orientable 2-manifold is
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Figure 2: Euler operator cxamples for polyhedral surfaces.

the Klein bottle. We consider only orientable 2-manifolds.

‘The natural operations under which 2-manifolds are closed are
Euler operations; Four of them are shown in Figure 2. The principal
characteristic of an Buler operation is the invariance of the Euler-
Poincaré formula. A sufficiency proof for a specific set of Euler
operations can be found in [21]. Note that 2-manifolds are not
closed under (regularized) boolean operations,

The class of representable surfaces is further restricted by the
kind of geometry associated with vertices, edges and faces. Ver-
tices map to points in R, For polyhedra the edges are typically the
straight line segments between their two endpoints and the facets
are simple, planar polygons. Other classes might allow curved sur-
faces as facets,

We now present a definition for polyhedral surfaces following
Steinitz [30]. It is the basis for the combinatorial integrity definition
of the polyhedral surface data structure and will lead to a stricter
class of representable surfaces, which provides more insight in the
combinatorial structure of the representation,

Definition 2,1. A structural complexisaunion C = VUEUF
of three disjoint sets together with an incidence relation. We call V
the vertices, I the edges and F the facets of the structural complex.
The incidence relation on C must be symmetric. No two elements
from the same set V, E or F are incident. If v € V is incident to
¢ € IV and e s incident to f € F' then v is incident to f.

Definition 2.2. A polyhedral complex is a structural complex with
four additional conditions.

(1) Bvery edge is incident to two vertices,
(2) Bvery edge is incident to two facets.

(3) For every incident pair v, f, there are exactly two edges inci-
dent to both,

(4) Bvery vertex and every facet is incident to at least one other
¢clement,

The neighborhood of a vertex is the set of edges and facets in-
cident to the vertex. If we restrict the incidence relation to this
neighborhood then each facet is incident to exactly two edges and
cach edge is incident to exactly two facets, The neighborhood de-
composes into disjoint cycles, As for the dual, the neighborhood
of a facet is the set of incident edges and vertices and decomposes
into eycles too, Assuming that the neighborhood of each facet is
a single cycle (geometrically speaking: no holes in the facet), we
can define a polyhedral complex as oriented if each cycle around
a facet is oriented and if, for each edge, the two cycles of its two
incident facets are oriented in opposite directions. A polyhedral
complex is orientable if there exists such an orientation.

Definition 2,3, The boundary representation of a polyhedron is a
polyhedral complex with a mapping V' ~ R®. This extends to the
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Figure 3: A winged-edge.

edges by mapping them to the open, straight line segments between
their two incident endpoints. The following additional conditions
must hold.

(5) The neighborhood of each vertex and each facet is a single
cycle.

(6) The polyhedral complex is orientable.

(7) The mapping of the cycle of the neighborhood of each facet
is the boundary of a simple, planar polygon. The mapping
extends for F to the open region of these polygons.

(8) Theimages of V, E and F are pairwise disjoint.

The surface defined by such a boundary representation is an ori-
entable 2-manifold where the neighborhoods of two vertices have
at most one edge and two facets in common, the edge and vertex
graphs are connected within each connected component of the sur-
face and where each facet has at least three edges on its boundary.
The smallest possible configuration is a tetrahedron.

The closed surfaces considered so far can be extended to sur-
faces with boundaries by two changes in the definition: Condition
(2) can be relaxed to allow edges that are incident to one facet;
they are called border edges. This induces a modification of (5):
The neighborhpod of a vertex decomposes into either a cycle or a
collection of open paths going from border edge to border edge.
Although the surface is no longer closed, the orientation still de-
fines a “solid” side of the surface. The minimal configuration for
surfaces with boundaries is a triangle. The data structures we will
describe can be used for polyhedrons as well as for surfaces with
boundaries with a simple extension denoting “empty” facets.

A suitable data structure based on the Definition 2.3 for polyhe-
dral surfaces has been used successfully for three years in a project
on contour-edge-based polyhedron visualization where we take ad-
vantage of the strict properties imposed by the definitions: For ex-
ample the definition for contour-edges is based on the orientable 2-
manifold property, and the lack of holes in facets simplifies certain
algorithms? [18]. An initial implementation of the data structure
made it easy to compute the silhouette for a polyhedral surface [14].
The extension of this data structure design and their advantages are
presented in the following sections.

3 Data Structures for Boundary Representations

The following survey of edge-based data structures addresses their
sufficiency for modeling topology and the efficiency of their primi-

2 And holes are not represented in the file-formats that occur usually in
visualization, for example VRML [12], Open Inventor [34] or the Object
File Format OFF [28]. These consist of a list of vertices followed by a list
of facets. Each facet is a list of indices denoting a subset of the points.
Edges are not explicitly stored but can be derived from the vertices shared
by facets. These formats are not strict enough for our purpose since they can
represent non-manifold configurations where three or more facets are inci-
dent to a single edge, non-orientable 2-manifolds, and also violate condition
(3) for polyhedral complexes. But they cannot represent holes in facets.
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tive operations aund storage costs. The representative example cho-
sen s the traversal around a vertex to the next counterclockwise
edge.
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vertices (PVT, NVT), two faces (PFACE, NFACE) and four inci-
dent edges that share the same faces and vertices (PCW, PCCW,
NCW and NCCW), the so-called wings, see Figure 3. An edge is
oriented from the source vertex PVT to the target vertex NVT. The
firce PFACE is to the left of the oriented edge when the surface is
seen from the outside.
This data structure is able to model crientable 2-manifolds. It
5 even sufficient for curved-surface environments where loops and
niulti-edges are allowed [33]. The basic operations include traver-
sal around a vertex and around a facet. High-level operations main-
taining integrity are Euler operators. The next edge counterclock-
wise around a vertex v for an edge e is equal to e->PCW if e~>
PUT == v and e->NCUJ otherwise.

Variants are possible where vertex and facet pointers can even
be omitted without loosing the traversal capabilities knowing the
Lu‘t_,e visited previously. However, all four edge pointers must re-
main if loops or multi-edges are allowed since otherwise the traver-
sal around a vertex or facet is no longer uniquely defined [33]. The
winged-edge data structure where the wings PCCW and NCCW
are omitted has been called Doubly Connected Edge List (DCEL)
by [24] though this name is now more commonly used for the hzlf-

edge data structure [5]. 3

The two symmetnc parts in the winged- edge correspond to the
two pﬁ%iuw orientations of the cubc. The inefficient case distinc-
tion in the traversal computation results from the fact that a pointer
to an edge does not encode the orientation it is currently used with,
One extension of the winged-edge maintains an additional bit with
cach edge-pointer to code the orientation, but this leads to cumber-
some storage layouts and function interfaces.

e

Halfedge Data Structure. The orientation problem can be
solved for the winged-edge data structure by splitting the edge into
the two symmetric records, called halfedges, and adding mutal
links to each other [33]. There are two ways of splitting the edze,
which are actually dual to each other. In both situations the half-
edge contains a pointer to an incident vertex, an incident facet and
the opposite halfcdge. It is a matter of convention whether the
source or target vertex is the one chosen to be stored in a halfedge or
whether the facet to the left or the right is stored. In [33] the source
vertex and the facet to the right were chosen. The FE-structure in
Figure 4 additionally stores a pointer to the next clockwise halfedge
and optionally a pointer to the previons counterclockwise halfedge
around the facet. It is therefore biased towards traversals around
the incident facet. The dual VE-structure is depicted in Figure 4

3In order to avoid confusion we will not use the name DCEL sines it

tumned out to be ambiguous. In fact, the name is misleading when denoting
alfedges and the
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Figure 5: Quad-edge data structure.
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edges counterclock\wse and clockwxse around the incident vertex.
The traversal operation that is not directly accessible with a singlo
pointer access is availabie through the opposite haifedge. For ex-
ample the next halfedge around the incident source vertex for the
FE-structure is opposite () ->next (). The different conven-
tions are not independent. If the convention defines the halfcdge
order around a facet to be clockwise, the halfedge order around the

vertex will be nnnnfprnlgrl'“nen and vice versa.

i -4

The halfedge data structure is able to model orientable 2-mani-
folds. It is sufficient for modeling topology even in the presence of
loops and muiti-edges, which can occur in curved-surface cnviron-
ments [33]. High-level operations maintaining integrity are again
Euler operators. The solid modeling system GWB [21] is based on
a halfedge-data structure, though it uses an additional edge rccord
between two opposite halfedges, which makes this access less effi-
cient, The Minimal Dpndpnnn Tool I\JR'T‘ f’)] uses a hqlﬂwﬂge data

structure for polygonal surfaces.

Quad-Edge Data Structure. If we perform both halving steps
for the halfedge data structure, we end up with the quad-edge data

structure ” 11 It lr)rn\m'h:q a fullv symmetric view on the nrimal
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and the dual graph as can be seen in Figure 5. Instead of using
opposite pointers, a two bit counter r is used to address a slat in an
edge record of four quad-edges. With an additional bit f per cdge
for the flipped status the quad-edge data structure is able to model
non-orientable 2-manifolds.

A quad-edge data structure is defined as an edge algebra with
three operations: Onext (),Rot () and Flip (). Anedgeisrep-
resented as a triple (e, 7, F\ with» € {0.1.2 '21 and f £ 10,11

TIEWASEEES He B RHAPAY M awas ¥ =)<y [ g et Bd
e is the base pointer to the quad-edge record with the four incident
edges e[0] to e[3]. The operations are implemented as follows with
a calculus modulus 4 for r and modulus 2 for f:

\..

Rot(e,nf) = (e,r+1+2f,f),
Flip(e,n, f) = (e,n f+1),
Onext(e,n, f) = Flipf(Rotf(e[r + M.

Four different orientations of an edge are considered: two orienta-
tions from vertex to vertex and two orientations for the dual edge
from facet to facet. The Rot operator rotates the edge by 90 de-
grees, 0 oscillating between the primal and the dual view of the struc-
ture. For non-orientable 2-manifolds an edge can dumiiﬁﬁtuly oe
seen from above or below the surface, which is encoded in the f
bit. The F1lip operation changes the view from above to below
or vice versa. The Onext operation gives the next quad-edyre in
counterclockwise order around the source vertex (origin), or the
next quad-edge in clockwise order if f is equal to one, The values

for Ones <t are simply stored in the record for each edge (i.e. four



Winged-Edge | Half-Edge Quad-Edge
[“Madcling space orientable 2-manifold 2-manifold
Operations Euler operator Splice()
Duality at compile time at runtime
(with adaptor) (Rot operator)
Holes in facels yes yes no
“Basie traversal case direct modulus
distinction access operation
Min size per edpe 4 ptr 4 ptr 2 ptr + 2 bits
Max slze per edge 8 ptr 10 ptr 8 ptr + 12 bits

Table 1; Comparison of the edge-based data structures.

pointers and four times three bits for r and f). The operations sim-
plify considerably for orientable 2-manifolds. They can be fusther
simplified if the dual graph is not necessary. This reduces to the
winged-cdge data structure enriched with a bit to encode orienta-
tion,

The single high-level operation that modifies a quad-edge data
structure is the Splice () operation, It is its own dual. The usual
Euler operators can be implemented in terms of Splice(). The
quad-edge data structure provides a unified view for the primal and
dual graph, This implies that vertices and facets cannot be dis-
tinguished with strong type checking at compile time. The defi-
nition used for duality implies, furthermore, that the facets must
have a single connected boundary. Holes in facets are not allowed.
If strong type checking is desired, the Splice() operation is
needed twice, once for the primal view and once for the dual view.
Splice() canalso be provided for the halfedge data structure.

Comparison of Edge-Based Representations. The main dif-
ferences of these edge representations are captured in Table 1. The
differences in the basic traversal capabilities are not negligible,
especially when considering modern microprocessor architectures
where conditional branching can be an order of magnitude slower
than computing, The storage size requirements are quite similar.
Our design will focus on the flexibility of trading runtime against
storage costs, We are interested in the minimal and maximal con-
figurations for the halfedge data structure and the space efficiency
of the quad-edge data structure, Another issue is the preference for
strong type checking at compile time. Polyhedral surfaces have dif-
ferent information stored in the vertices and facets, namely points
and plane equations, These can be treated as duals of each other, but
in a strongly-typed geometry kernel (like the one CGAL provides)
they are different types and might even be represented differently.
Additional information, like color, will finally destroy the typeless
symmetry of the duality assumed by the quad-edges. We consider
non-orientability as not so important since three-dimensional sur-
faces of solid objects are always orientable,

The choice for our design is a halfedge data structure like the
FE-structure, The conventions used are depicted in Figure 6. We
have next (), opposite() and prev() pointers for the half-
edges, The incident vertex is the target vertex of the oriented half-
edge, The incident facet is to the left of the halfedge which implies
a counterclockwise ordering of the halfedges around the facetand a
clockwise ordering around the vertex when seen from the outside.
This complies with the right-hand rule for out-facing normals of
plane equations for facets,

4 Generic and Object-Oriented Programming

The major design issues considered for polyhedral surfaces are ge-
nericity, flexibility, time efficiency, space efficiency and ease-of-
use, Two techniques are available in C++ for realizing generic and
flexible designs: Object-oriented programming, using inheritance
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Figure 6: Halfedge data structure.

from base classes with virtual member functions, and generic pro-
gramming, using class templates and function templates.

The flexibility in the object-oriented programming paradigm is
achieved with a virtual base class, which defines an interface, and
as many derived classes as different actual implementations of the
interface are present in a system. The technique of so-called virtual
member functions and runtime type information allows a user to se-
lect any of the derived classes wherever the base class is required —
even at runtime, Generic functionality can be programmed in terms
of the base class without knowing all possible derived implementa-
tions beforehand.

The advantages are the clear definition of the interface and the
flexibility at runtime. There are four main disadvantages: This
paradigm cannot provide strong type checking at compile time, en-
forces tight coupling through the inheritance relationship [19], it
adds additional memory to each object derived from the base class
(the so-called virtual function table pointer) and it adds an indi-
rection through the virtual function table for each call to a virtual
member function [20]. The latter one is of particular interest when
considering runtime performance since virtual member functions
can usually not be made inline and are therefore not subject to code
optimization within the calling function. Modern microprocessor
architectures® can optimize at runtime, but, besides that runtime
predictions are difficult, these mechanisms are more likely to fail
for virtual member functions. These effects are negligible for larger
functions, but small functions will suffer a loss in runtime of one
or two orders of magnitude. Significant examples are coordinate
access and arithmetic for low-dimensional geometric objects and
traversals of combinatorial structures. Vertices, edges and facets for
polyhedrons are anticipated to be small objects with simple mem-
ber functions. The space and runtime overhead introduced through
virtual member functions would not be negligible.

The generic programming paradigm features what is known in
C++ as class templates and function templates. Templates are pro-
gram recipes where certain types are only given symbolically, the
so called template arguments. The compiler replaces these argu-
ments with actual types where the program recipe is actually used,
at the place of the template instantiation. The recipe transforms to
anormal part of a program. For function templates this can even be
done automatically by the compiler, since the types of the function
parameters are known to the compiler. Examples are a generic list
class for arbitrary item types or a swap function exchanging vari-
able values for all possible types. The following definitions would
enable us to use 1ist<int> as a list of integers or to swap two
integer variables x and y with swap (%, v).

template <c¢class T> class list {

// ... , uses T as item type.
}:

4Pipelining, branch prediction, speculative execution and reordering,
global optimizers using runtime statistics and the interplay with the cache
architecture.




template <class T> void swap( T& a, T& b) {
T tmp = a; a =b; b = tmp;

}

The example of the swap function illustrates that a template usually
assumes some properties to hold for the template arguments, here
that variables of those type can be assigned to each other. These
requireinents are not expressed within C++, only in the accompa-
nying documentation. An actual type used in the template instan-
tiation must fulfill the requirements of the template argument in
order of the template to work properly. Requirements can be clas-
sified into syntactical ones, there must be an assignment operator,
and semantical ones, the implementation of the operator must re-
ally do what it is supposed to do. Syntactical requirements will be
checked by the compiler at instantiation time of the template. Se-
mantical requirements cannot be checked. In certain situations it
might be wishful to stress semantical requirements with additional
syntactical, i.e. checkable, requirements, e.g. symbolic tags.

For class templates exist the specialty that different member
functions might impose different requirements on the template ar-
guments, but a certain instantiation of the class template uses only
a subset of the member functions. Here, the arguments must only
fulfill the requireruents imposed by the member functions actually
uscd. In particular, the compiler is only allowed to instantiate those
member functions of an implicit instantiation of a class template
that are actually used [4]. This enables us to design class templates
with optional functionality that impose additional requirements on
the template arguments if and only if this functionality is used.

A good example for the generic programming paradigm is the
Standard Template Library [4, 25, 29]. The main source of its gen-
crality and flexibility stems from the separation of concepts and
models [29]. For example, an iterator is an abstract concept de-
fined in terms of requirements. A certain class is said to be a
model of the concept if it fulfills the requirements. The iterator
concept is a generalization of a pointer and the usual C-pointer is
a model of an iterator. Iterators serve two purposes: They refer to
an item and they traverse over the sequence of items in a container
class, Container classes manage collections of items. Different
categories are defined for iterators: input, output, forward, bidi-
rectional and random-access iterators. They differ mainly in their
traversal capabilities. The usual C-pointer is a random-access iter-
ator. Generic algorithms in the STL are not written for a particular
container class but for a pair of iterators instead. The so called
range [first,beyond) of two iterators denotes the sequence
of all iterators obtained by starting with first and advancing
fixrst until beyond is reached, but does not include beyond.
A container is supposed to provide a type, which is a model of an
itcrator, and two member functions: begin () returns the start it-
erator of the sequence and end () returns the iterator referring to
the “past-the-end’-position of the sequence. A generic contains
function could be written as follows and will work for any model
of an input iterator.

verplate <class InmputIterator, class T>

bool contains{ Inputlterator first,
Inputlterator beyond,
const T& value)

{
vhile ((first != beyond) && (*first != value))
++first;
veturn (first != beyond):

}

The advantages of the generic programming paradigm are strong
type checking at compile time during the template instantiation,
no need for extra storage or additional indirections during function
calls, and full support of inline member functions and code opti-
mization at compile time [32]. One disadvantage is the lack of a
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formal scheme in the language for expressing the requirements of
template arguments, the equivalent to the virtual base class in the
object-oriented programming paradigm. This is left to the program
documentation. Another disadvantage is that the flexibility is only
available at compile time. Polymorphic lists at runtime cannot be
implemented in this way.

In many places we follow in CGAL the generic programming
paradigm to gain flexibility and efficiency. Important is the com-
pliance with the STL to promote the re-use of existing generic al-
gorithms and container classes, but — more important — to unify the
look-and-feel of the design of CGAL with the C++ Standard. It is
therefore easy to learn and easy to use for users familiar with the
STL. In a few places we make use of the object-oriented program-
ming paradigm, for example the protected access to the internal
representation, see Section 9.

5 Design Goals for Polyhedral Surfaces

We define the concept polyhedron similar to STL container classes
to be responsible of managing the items of a polyhedral surface
and their combinatorial structure. We have identified the following
design issues:

1. The edge-based data structures discussed in the previous sec-
tion have a natural notion of the edges around a vertex or
around a facet. It would be costly to provide iterators for
these kind of circular sequences since the notion of ranges
and the ‘past-the-end’ value do not extend naturally, We pro-
pose a concept similar to iterators — what we call circulator
~ for this kind of structure.

. STL containers base their interface on iterators. For polyhe-
dral surfaces the order of the stored items is not well-defined
in certain situations, e.g. after Euler operations. Here we fall
back on the concept of handles, which is the item-denoting
part of iterators and ignore the traversal capabilities. In par-
ticular, any model of an iterator or circulator is a model of a
handle.

. The actual storage organization of the vertices, edges and
facets influences the space and runtime efficiency. A doubly-
connected list representation allows random insertion and re-
moval while providing bidirectional iterators that enumerate
all items. A more space efficient storage uses an STL vector
which allows only the efficient removal of items at the end of
the vector but provides random-access iterators. Other vari-
ants, like managing chunks of memory or simple allocation
on the heap without any iterators over all items could be an-
ticipated too.

. The necessary incidence information might depend on the
application. The minimum needed for traversals are nezzt ()
and opposite() pointers. The prev () pointcr can be
simulated with a search around the vertex or facet. For tri-
angulations this is still a simple expression, i.e. prev ()
next () ->next (), and for constant degree a constant time
operation. If no information needs to be attached to vertices
or facets, no storage should be allocated for them, including
the referencing pointer in the edges. In its extreme the data
structure reduces to an undirected graph.

. It should be easy to add additional information to the differ-
ent items, e.g. color to facets. Geometry will be attached us-
ing the same technique. Modifying one item should not hin-
der the re-use of the other items, for example, adding color
to facets should not imply that a new vertex type must be
declared.



6, The data structure should provide an easy-to-use high-level
interface, This interface should protect the internal combi-
natorial integrity of the data structure as given in Defini-
tion 2,3, Advanced algorithms concerned with efficiency,
¢.g. a file format scanner, should be allowed to access the
internal structure in a controlled fashion,

7, ‘The management of connected components and containment
relations, e.g. holes in facets or shells, is seen as an indepen-
dent functionality with its own layer. Different solutions can
be envisioned.

We concentrate on the combinatorial aspects of the polyhedral sur-
face, Additional issues will appear when considering geometry,
for example flexibility with the point type and the geometric pred-
fcates, One technique explored for this in CGAL is an extension
of the traits classes {26] known from the C++ standard library,
see [7,9, 3]

6 Previous Work

The Library of Efficient Datatypes and Algorithms (LEDA) [22,
23] contains no data structure tailored for three-dimensional poly-
hedrons, but it provides a general data structure for graphs and one
for planar maps derived from graphs. Additional information can
be attached either by parameterized graphs or by node arrays and
edge arrays, These are associative arrays (hash tables) which al-
lows the easy addition of information even for temporary purposes.
The disadvantage of the parameterized graph is that one must al-
ways specify both parameters. The disadvantages of the node and
cdge arrays are the additional costs for the lookup operations and
additional storage requirements, A more subtle disadvantage is that
a reference to a node is not sufficient to retrieve its associated at-
tributes. The array must be known too. The current size of graph
nodes is equivalent to 13 pointers and for halfedges it is 11 pointers.
There is no flexibility for obtaining smaller graph structures. LEDA
has its own notion of iterators and a rich body of algorithms for
working on graphs, At the moment it is not compliant to the STL.
LEDA is very homogencous and easy-to-use. Its own framework
is generic and flexible but (currently) monolithic when combined
with other libraries like the STL. It does not reach the flexibility
in runtime and space efficiency tuning achieved with the approach
presented in this paper.

The Minimal Rendering Tool MRT uses a halfedge data struc-
ture to represent polyhedral surfaces [2]. It is implemented as
a C++ class hierarchy and provides Euler operations to maintain
combinatorial integrity, The internal representation is accessible
at construction time and protected thereafter, No other access is
granted, It separates geometry and topology except for vertices
where a point is incorporated just at the combinatorial level for effi-
ciency reasons, Flexibility and genericity are achieved with virtual
member functions for geometric properties. No flexibility is avail-
able at the topological level. Facets are responsible of storing the
ring of halfedges of their boundary. Summarizing, this approach
leads to Jarger nodes for vertices, halfedges and facets and slower
functions for geometric properties than the solution we developed.

7 Circulators

Our new concept of circulators reflects the fact that combinato-
rial structuses often lead to circular sequences, in contrast to the
linear sequences supported with iterators and container classes in
the STL, For example polyhedral surfaces and planar maps give
rise to the circular sequence of edges around a vertex or a facet.
Implementing iterators for circular sequences is possible, but not
straightforward, since no natural past-the-end situation is available.
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An arbitrary sentinel in the cyclic order would break the natural
symmetry in the configuration, which is in itself a bad idea, and
will lead to cumbersome implementations. Another solution stores,
within the iterator, a starting edge, a current edge, and a kind of
winding-number that is zero for the begin () -iterator and one for
the past-the-end iterator®. No solution is known to us that would
provide a light-weight iterator as it is supposed to be (in terms of
space and efficiency). Therefore we introduced in CGAL the sim-
ilar concept of circulators, which does allow light-weight imple-
mentations. The CGAL support library provides adaptor classes
that convert between iterators and circulators, thus integrating this
new concept into the framework of the STL.

Circulators share most requirements with iterators. Three cir-
culator categories are defined: forward, bidirectional and random-
access circulators. Given a circulator ¢ the operation *c denotes
the item the circulator refers to. The operation ++c¢ advances the
circulator by one item and -~-c steps a bidirectional circulator one
item backwards. For random-access circulators c+n advances the
circulator by n where n is a natural number. Two circulators can be
compared for equality.

Circulators develop different notions of reachability and ranges,
than iterators. A circulator 4 is called reachable from c if ¢ can
be made equal to 4 with finitely many applications of the operator
++c. Due tothe circularity of the data structure this is always true if
both circulators refer to items of the same data structure. In partic-
ular, c is always reachable from c. Given two circulators ¢ and 4,
the range [c,d) denotes all circulators obtained by starting with
c and advancing c vntil d is reached, but does not include d if & #
c. So farit is the same range definition as for iterators. The differ-
ence lies in the use of [c, c) for denoting all items in the circular
data structure, whereas for an iterator i the range [i,1) denotes
the empty range. Aslong asc != dtherange [c,d) behaves
like an iterator range and could be used in STL algorithms. It is
possible to write just as simple algorithms that work with iterators
as well as with circulators, including the full range definition [16].
An additional test ¢ == NULL is now required that is true if and
only if the data structure is empty. In this case the circulator ¢ is
said to have a singular value. For the complete description of the
requirements for circulators we refer to [16].

We repeat the example for the generic contains function
from Section 4 for a range of circulators. The main difference is
the use of a do-while loop instead of a while loop.

template <class InputCirculator, class T>
bool contains( InputCirculator c,
InputCirculator d,
const T& value)

{
if ( ¢ != NULL) {
do {
if ( *¢ == value)
return true;
} while (++c != d);
}
return false;
}

8 Design Overview

The global picture of the design is given in Figure 7. The design
strictly separates topology and geometry. Vertices, halfedges and
facets carry both kinds of information. The Halfedge_data_,
structure is the container managing these three items and their
topological relations. The Topological planar.map isaface-
based representation. It maintains holes in facets and is able to enu-

5This is currently implemented in CGAL as an adaptor class which pro-
vides a pair of iterators for a given circulator.
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Figure 7: Design overview.

racrate outer and inner boundaries of a facet. It uses the edge-based
duta structure, The Polyhedron uses the Halfedge_data_.
structure and adds geometric operations. It imposes further
restrictions on the data structure as defined for the polyhedral com-
plex above, for example, that an edge always has two distinct end-
points. The Planar map and a possible Polyhedron_with_
holes are based on the topological planar map since they will
maintain holes in facets.

All entities in this picture are sets of requirements. Each can
huve multiple models. There are many different possibilities for
vertices, edges and facets. Currently two different models are pro-
vided for the Halfedge data-structure. Many combina-
tions are possible and result in different polyhedron data structures.
We make use of the implicit instantiation of template classes in
C+ a5 described above. The requirement sets consist of a manda-
tory part that every model must comply with and certain optional
purts a model must only comply with if the corresponding function-
ality is actuatly used. For example, a vertex is allowed to be empty.
If we want to use it for the polyhedral surface then the normal ves-
tor computation imposes the additional requirements that the vertex
yust contain a three-dimensional point and must give access to it
with the member function point ().

9 Design of the Polyhedron

A more refined picture of the design is shown in Figure 8. At
the bottom we start with base classes for vertices, halfedges and
fuccts. Their responsibilities are the actual storage of the incidences
in terms of void-pointers, the geometry and other attributes. Es-
pecially the storage of incidences with void-pointers allows, for
example, the facet class to be exchanged without changing the half-
edge class. The advantage of strong type checking will be reestab-
lished for the void-pointers in the next layer. Implementations for
vertices, edges and facets are provided that fulfill the minimal set of
requircments. They can be used as base classes for own extensions.
Richer implementations are provided as defaults; for polyhedrons
they provide a three-dimensional point in the vertices and a plane
equation in the facets.

The Halfedge.data.structureis responsible of the stor-
ope oraanization of the vertices, halfedges and facets. Currently
implementations are provided that use a bidirectional list or an
STL vector internally. The Halfedge.data.structure da-
rives new classes for vertices, halfedges and facets. They replace
the void-pointer incidence information with type-safe pointers at
the interface. Additional information besides the incidence infor-
miation sirply stays unaffected and will be inherited from the base
clusses.
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For the Hal fedge_data_structure different models are
possible (two are already available). Thus the set of requirements
for the Halfedge.data.structure is kept small. To sup-
port the implementation of high-level operations, a helper class
Halfedge.data_structure.decorator is provided, which
is not shown in Figure 8 but would be placed at the side of the
Halfedge_data_structure since it broadens that interface
but does not hide it. It adds Euler operations and adaptive func-
tionality. For example, if the prev () function is not provided for
halfedges, a £ind prev() function searches the previous half-
edge along the facet. If the prev () function is now implemented,
the find_prev () function simply calls it. This distinction can be
resolved at compile time with a technique called compile-time tags,
similar to iterator tags in [31].

The Polyhedron layer adds ease-of-use in terms of high-
level functions, high-level concepts for accessing the items, i.e. han-
dles, iterators and circulators (pointers are no longer visible at this
interface), and the protection of the combinatorial integrity. It de-
rives new vertices, halfedges and facets to provide the handles and
to hide the pointers.

Algorithms with invalid intermediate states need access to the
internal representation. A protected access is granted for classes
derived from Modifier base following the strategy pattern [8).
The example in Figure 9 depicts the class design for a file format
scanner for polyhedrons. The back-door provided here is a kind of
callback-function embedded in a class object. The Polyhedion
accepts a modifier class with the delegate () member function
and calls its virtual operatox {) member function with the in-
ternal halfedge data structure. The Scanner class derives from
the Modifier base and implements the operator () func-
tion where it can access the internal representation. The achieve-
ment is here that the delegate () function of the Polyhedron
can verify the validity of its own internal representation after the
operator () function has done its work. The Scannex class is
in charge of returning from execution only with a valid represcnta-
tion, even in the case of a failure. This approach is also known from
database systems as transactions. The special task the Scanner
accomplishes (only creation of new items) enables us to implement
the transaction scheme efficiently with a simple rollback function
that deletes all items created so far in the case of a failure. In gen-
eral the rollback would be more costly.

10 Evaluation of the New Design

We will illustrate in the following that our design not only meets
the design goals formulated in Section 5 but that it is also still casy
to use. A certain familiarity with the look-and-feel of C or C++
will help in this section.



fiinclude <CGAL/Cartesian.h>

fiinclude <CGAL/Halfedge_data_structure_polyhedron_default_3.h>

fiinclude <CCGAL/Polyhedron_default_traits_3.h>
#finclude <CGAL/Polyhedron_3.h>

typedef CGAL_Cartesian<double>

typedef CGAL_Halfedge_data_structure_polyhedron_default_3<R>

typedef CGAL_Polyhedron_default_traits_3<R>
typedef CGAL_Polyhedron_3<Traits,HDS>

int main{) {
Polyhedron P;
P.make_tetrahedron();
retuzn 0;

R;

HDS;
Traits;
Polyhedron;

Figure 10: Example program illustrating a default polyhedron instantiation in CGAL.
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Figure 9: Class diagram of the polyhedron design illustrating the
safe access to the internal representation using the strategy pattern.

We start with a complete program | in Figure 10 using a de-
fault polyhedron instantiation in CGAL®, The #include direc-
tives provide the types used in the example. It is convenient to
use typedef£’s to create the nested type declarations one by one.
COAL supports different representation types; CGAL Cartesian
i3 one of them, parameterized with the coordinate type double.
The default halfedge data structure for polyhedrons uses three-di-
mensional points for the vertices and a plane equation for the facets
as determined by R, The CGAL_Polyhedron.3 is parameterized
with a traits class for the geometric parameterization and the half-
edge data structure, Themain () function declares a variable P for
the polyhedron and creates a combinatorial tetrahedron in P where
space for points and plane equations is reserved in the vertices and
facets (even though the space is not used here). More informa-
tion about representation classes and traits classes in CGAL can be
found in [7].

The class Polyhedron provides the claimed ease-of-use with
handles, iterators, circulators and high-level operations, thus ad-
dressing design goals (1) and (2). This default representation is
actually equivalent to;

typadef CGAL_Halfedge_data_structure_using list<
CGAL_Vertex_max_base< CGAL_Point_3<R> >,
CGAL_Halfedge_max_base,
CGAL_Polyhedron_facet_max_base<R> > HDS;
The internal storage organization can be easily changed with the
class CGAL.Halfedge.data. structureusing.vector to
1 vector-based one, This satisfies design goal (3). The requirements

SCaAL uses the prefix CGAL. for all global names, which will be re-
placed by a namespace, and the suffix -3 for three-dimensional entities.
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that a self-written class must fulfill to be a model of a halfedge data
structure are documented in [17].

If we exchange the default base classes for the minimal base
classes CGAL_Vertex_min_base, CGAL_Halfedge_min__
base and CGAL Facetmin.base, we get a data structure for
undirected graphs; vertices and facets are empty (besides a few
compile-time tags) and the minimal halfedge base class stores only
anext() and an opposite () pointer. This makes four point-
ers per edge. See [17] for the actual short implementations of these
base classes. In analogy to the quad-edge data structure we can re-
place the opposite () pointer internally by a single bit knowing
that opposite halfedges are always stored in consecutive places by
our halfedge data structures. Knowing C, this bit can be put into
the least-significant bit of the next () pointer, which is always
zero on todays systems. This yields an implementation with two
pointers per edge! The easy realization of this idea in our design is
shown in the manual [17].

We can add a color variable to the default facet:

template <class R>

struct Facet

: public CGAL_Polyhedron_facet_max_base<R> {
CGAL_Color color; .

};

This facet can be used instead of the default and we have a poly-
hedron with colored facets. This satisfies design goal (5). Simi-
larly easy is the realization of data structure with incidences that
lie between the minimal and maximal supported incidences. We
add a previous pointer to the minimal halfedge in the following ex~
ample. The type Supports_halfedge.prev indicates that the
class now supports a previous pointer.

class Halfedge : public CGAL_Halfedge_min_base {
void* prv;

public:
typedef CGAL_Tag_true Supports_halfedge_prev;
void* prev() { return prv;}
const void* prev() const { return prv;}
void set_prev({ void* h) { prv = h;}

}:

The whole spectrum of incidences is easily available in the design
presented, fulfilling design goal (4). Design goals (6) and (7) are
also met. The example for the easy use of the modifier mecha-
nism and the transaction scheme for the scanner can be found in
the manual [15).

Summing up, we have met all design goals presented in Sec-
tion 5 without imposing runtime and storage overhead. Predefined
implementations are easy to use and different solutions within the
possible flexibility can be achieved with little effort.



11 Conclusion

We have presented a design framework for combinatorial data strac-
tures, such as planar-maps and polyhedral surfaces. It extends to
curved-surface environments and can also be applied to other com-
binatorial data structures, such as triangle-based structures for tri-
angulations. We have identified important fundamentals for such
a design: A proper definition of the modeling space, strong type
checking, time and space efficiency.

The adaption of the generic programming paradigm used in the
STL has led to an easy-to-use and flexible high-level interface for
polyhedral surfaces featuring handles, iterators, the new concept
circulators and Euler operators. The internal representation can be
chosen from a wide range of different halfedge data structures ex-
ploiting many tradeoffs between time and storage efficiency, iter-
ator categories and modifiability. Additional attributes are easy to
add. Other solutions, such as dynamic type checking at runtime,
generic attribute pointers or templates, can still be added within this
design. The integrity of the internal representation is protected and
a mechanism is available that grants safe access to it. We expect a
continuation of this approach in CGAL.
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