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Abstract.  Subdivision curves and surfaces are very useful parts of current geometric 
modeling. In this paper we present two basic subdivision schemes for triangular meshes, Loop 
scheme and modified butterfly scheme. Main part of this work is data structure for storing 
triangular mesh that saves memory and subdivision schemes can be performed fast using this 
structure. We also give steps how to perform described schemes on that structure. 
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1.  Subdivision schemes 

Subdivision approach for geometric modeling is not a new part in this area. For 
example de Casteljau algorithm for Bézier curves produces two control polygons that are a 
better approximation of Bézier curve than the previous control polygon. And this is the basic 
idea of subdivision. Given initial polygon or mesh, we try to construct sequence of polygons 
or meshes that converge to some limit curve or surface. In each step we get better 
approximation of limit object. Such process is described by rules, which say how to perform 
one step (iteration) of the sequence. Good example is Chaikin’s algorithm for creating smooth 
curve with basic subdivision rules. This so-called “corner cutting” algorithm produces in each 
step two new vertices on each line of polygon, then removes old vertices and connect new 
vertices. Special rules are applied at the first and last line. Figure 1 illustrates this process.  

      

      
Figure 1 Chainkin subdivision curve. 

There exist different types of subdivision schemes. The two fundamental types are 
approximating and interpolating schemes. Approximate scheme produces object that 
approximates initial polygon or mesh, interpolating scheme in each step contains vertices 
from previous step so limit object interpolates vertices of initial object. We can also differ 
schemes by smoothness of limit object.  

We will focus now on the subdivision surfaces, especially on the surfaces described as 
triangular meshes. Now we are going to present two most simple schemes for creating 
approximating and interpolating limit surfaces. These two schemes are local so to change the  
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position of old vertices and to create new ones we will use only old vertices from local 
neighborhood of that vertex. Each description of the scheme consists of three parts: 

1. How to create new vertices, its geometric position (coordinates) 
2. How to change geometric position of old vertices in mesh 
3. How to connect new vertices with old and other new vertices (topology) 

These rules can be displayed graphically and are called mask of the scheme. We will see, that 
these masks are different for regular vertices and extraordinary vertices. Regular vertices are 
for triangular meshes with valence (number of neighbors) equal to 6 in the middle of mesh 
and 4 on the boundary, extraordinary vertices are the others. More precise description of 
subdivision process can be found in [2]. 

1.1.  Loop scheme 
Loop scheme is approximating scheme, which produces C1 smooth surface near 

extraordinary vertices, and C2 smooth surface elsewhere [1]. Figure 2 shows masks of this 
simple scheme. 

 

 
Figure 2 Masks for Loop scheme. 

 
We give an explanation of these masks. As we mentioned before, the masks show how 

to create new vertices and move the old ones. In the case of Loop scheme we have: 
1. Mask for creating new vertices (called odd vertices) is on the left side. It means 

that the new vertex is created between two old vertices as barycentric 
combination of the four nearest old vertices with barycentric coefficients given 
by the mask. For new vertices on the boundary or the crease there is also a 
simple mask with only two old vertices. 

2. Mask on the right side shows how to change position of old vertices (called 
even vertices). Again the new position of old vertex is computed as a 
barycentric combination of its old position and the old position of its 
neighbors.  The barycentric coefficients are written in the mask, as well as the 
rule for moving old vertices on boundary or crease. Here k is the valence of the 
current vertex and for β we can use two approaches. One approach is to put 
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3. The last step is to change the topology of mesh and to include the new vertices. 
Simply for each old triangle all edges are removed, between two old vertices 
connected with old edge new vertices are inserted and these new vertices are 
connected with each other. Figure 3 shows this refinement. 

 

 
Figure 3 Topology refinement for one triangle and inserting new vertices. 

 
To perform one step of the subdivision process, new vertex should be created for each 

edge, each old vertex should be moved to the new position and each edge should be removed 
and the new edges should be used to create more precise topology. 

1.2.  Modified butterfly scheme 
This is interpolating scheme that produces C1 smooth surfaces except the 

neighborhood of the extraordinary vertices, where it creates artifacts [3]. There are special 
rules for neighborhood of the regular and the extraordinary vertices. Masks are showed in the 
Figure 4. 

 
Figure 4 Masks for modified butterfly scheme 
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This scheme is working on the triangular mesh and its rules are similar to Loop 
scheme, the explanation of masks is following: 

1. Creating of new vertices is the most difficult part of rules. For each edge we 
want to insert new vertex between end vertices of edge. We have three 
situations here: 

a. Both end vertices are regular. Then we use mask on the left side of 
Figure 4. All coefficients are used as in Loop scheme, also for 
boundary and crease vertices. 

b. If one of the end vertices is an extraordinary vertex, then we use mask 
on the right side of Figure 4. As we see, we use for creation of the new 
vertex only the vertices from neighborhood of the extraordinary vertex 
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coefficient) equal to 0,75. 
c. If both end vertices are extraordinary, we use the mask for end vertices 

separately as in case b. and we get the final result as barycentrum of 
these two computed vertices. 

2. Because this scheme is interpolating, we leave the old vertices at the old 
position so we don’t move them. 

3. The topology refinement is again equal to the refinement of Loop scheme. 
 

2. Data structure 
Our data structure for triangular mesh is very simple and stores only the nearest 

neighborhood of one vertex. So we have only one table (vertex table) with the records for 
vertices (number of rows in table is number of vertices in mesh). This vertex record contains 
the following: 

• Geometric position (coordinates of vertex). 
• Valence of vertex. 
• List of indexes of vertex neighbors. These indexes are counterclockwise sorted 

equally to the order of neighbors around vertex, so we have also information 
about the orientation in the vertex. Index is number of record (line) in table. 

• Additional custom data. 
This structure does not need much memory. For exact amount of used memory we 

have formula: 
memory = number_of_vertices * (3 * sizeof(float) + sizeof(integer) + sizeof(custom_data)) + 

number_of_edges * 2 * sizeof(integer) 
 

So for triangle mesh we have memory usage equal to O(n). But we want to use this 
structure to perform subdivision process on stored triangle mesh. Description of this process 
is part of the next section. 
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2.1. Performing Loop scheme 
For this subdivision process we have three main steps that need to be performed, so we 

will describe them now in the case of our structure. 
1. This part is simple, we are going through all vertices and for current vertex we 

are going through all his neighbors. If current neighbor of current vertex was 
not processed, we can insert a new vertex between them. The mask for this 
new vertex is using only four vertices from neighborhood of current vertex so 
access to them is very easy. At the end of this process we get all new vertices. 

2. This part can be done with one pass of all vertices and using the given mask, 
which contains only vertices from vertex neighborhood. 

3. Last part is topology refinement. If we are inserting new vertex, we have to 
remove old edge and replace it with two new edges connecting new vertex and 
two endpoints of the old edge. This means that we have to change one number 
in the list of neighborhood vertices for both endpoint vertices and replace it 
with the index of new created vertex. To connect the newly created vertices in 
the triangles, we only need to connect the newly created vertices when passing 
the neighbors of the current vertex. 

 
In each of these three steps, we are going through all vertices, so we can do all these 

steps in one pass, so time complexity is also O(n). but then we have to remember the old 
position of the old vertices.  

2.2. Performing modified butterfly scheme 
Because modified butterfly and Loop subdivision are different only in masks for the 

old and new vertices, so if we want to perform this scheme, it is very similar to previous one. 
We only have to add new steps when creating the new vertices, but we don’t need to move the 
old vertices. The topological refinement is the same.  

 

3. Implementation & results 

We implemented the described structure for the triangular meshes and also both 
subdivision processes. We use this implementation to show how fast can the subdivision 
process be using this structure. We implemented it using Visual Studio .NET with OpenGL 
library for displaying meshes. We tested implementation on the PC with AthlonXP 1700+, 
348 MB memory and GeForce 2 MX graphics card. Our implementation also contained a part 
for loading meshes from .ply format. 

Figures below show few steps of subdivision process on some meshes. In table we can 
see time and memory complexity of meshes needed for performing subdivision process. 

 
Loop scheme Vertices Edges Triangles Time Memory 

0 6789 20361 13574 0 s 380136 B 
1 27105 81444 54296 0.609 s 1520352 B 
2 108594 325776 217184 1.437 s 6081216 B 
3 434370 1303104 868736 3.360 s 24324672 B 
4 1737474 5212416 3474944 12.015 s 97298496 B 

Table 1 Time and memory complexity for Loop scheme performed on the screwdriver model. 
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Figure 5 The original model of screwdriver and the model after one step of Loop subdivision 

process. 

   

Figure 6 Model of a double torus and its approximating and interpolating subdivision surfaces. 

     

Figure 7 Model of a cube with six steps of Loop (left) and modified butterfly (right) subdivision. 
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