
Geometric 

Modeling 

 in Graphics 

Martin Samuelčík 

www.sccg.sk/~samuelcik 

samuelcik@sccg.sk 

Part 1: Polygonal Meshes 



Geometric object 

 Set of connected points in space 

 Usually inside Euclidean space (orthonormal basis, 

coordinates, inner product, norm, distance, angle, …) 

 Topological dimension – 0D,1D, 2D, 3D objects 

 Topological dimension defined by open covers 

Geometric Modeling in Graphics 

wikipedia.org 



Manifold 

 n-manifold – set of points locally homeomorphic to n-

dimensional Euclidean space 

 Manifold resembles Euclidean space near each point 

 For each point of n-manifold there exists his 

neighborhood homeomorphic with open n-dimensional 

ball  

 n-manifold is n dimensional object 

 Homeomorphism – continuous function with continuous 

inverse function, means topological equivalence 

Geometric Modeling in Graphics 



Manifolds & non-manifolds 

Geometric Modeling in Graphics 



Polygonal mesh 
 Boundary representation of 3D object (polyhedron) or 

representation of 2D object (surface) 

 Boundary represented as set of polygons (faces) 

 Each polygon defined by ordered set of vertices 

 Vertices – coordinates – geometric information 

 Order of vertices – topological information 

 Possible additional element = edges – connecting 2 
consecutive vertices in polygon 

 Edges are shared between several neighboring polygons 

 Boundary representation of 2D object – line loop 

Geometric Modeling in Graphics 

wikipedia.org 



Extended polygonal mesh 

 Extended faces with holes and self intersecting edges 

 Each face is originally defined as set of contours 

 Type of representation in some modeling packages 

 Can be transformed to simplified mesh with faces 

without holes – using tessellation algorithms (GLU 

tessellation, CGAL, Visualization Library, … )  

Geometric Modeling in Graphics 



Polygonal mesh orientation 

 Edge orientation – order of two vertices 

 Polygon orientation – order of vertices (edges) that 
defines polygon boundary 

 Polygonal mesh orientation – given by orientation of 
faces, such that polygons on common edge have opposite 
orientation 

 If orientation exists – orientable – have both sides  

 Computation of orientable area, volume 

Geometric Modeling in Graphics 

Oriented Area of simple polygon  

[xi, yi] is i-th vertex 
Oriented Volume of convex polyhedron 

xi is any point of i-th face 

Ai is are of i-th face 

ni is normal of i-th face 



Euler characteristic 

 Boundary representation of 3D object using 2-manifold 

polygonal mesh 

 Oriented 2-manifold polygonal mesh  

 Works also for planar graphs 

 Genus g – number of holes in 3D object 

 V, E, F – number of vertices, edges, faces in mesh 

 V-E+F=2-2g 

Geometric Modeling in Graphics 



Euler characteristic 

Geometric Modeling in Graphics 

wikipedia.org 



Polygonal mesh structures 

 Structures representing vertices, edges, faces 

 Memory complexity of structures 

 Optimizing algorithms on these structures 

 Algorithms for creation and update 

 Geometric algorithms 

 Transformations, intersections 

 Topological algorithms 

 Finding neighborhood elements 

 Visualization algorithms 

 Usually using graphics cards and 3D APIs 

 

Geometric Modeling in Graphics 



Topological algorithms 

 Find elements (vertices, edges, faces) that are connected 

with given element 

 Connected through k other elements = searching in k-

ring neighborhood 

 Used frequently in many modeling algorithms 

 

Geometric Modeling in Graphics 

Vertex Edge Face 

Vertex VV VE VF 

Edge EV EE EF 

Face FV FE FF 
subdivision surfaces computation of vertex normals 



Edge-Vertex meshes 

 Simple representation of polygonal mesh 

 Structure containing two sets 

 List of vertices 

 List of edges, where each edge is given by two vertices = two 
pointers to list of vertices, several types of pointer 

 No implicit representation of faces 

 No information of neighboring elements = slow 
topological algorithms 

 

Geometric Modeling in Graphics 

struct Vertex 
{ 

float x, y, z; 
} 

struct Edge1 
{ 

float x1, y1, z1; 
float x2, y2, z2; 

} 

struct Edge2 
{ 

int i1; 
int i2; 

} 

struct Edge3 
{ 

Vertex v1; 
Vertex v2; 

} 

struct Mesh 
{ 

List<Vertex> vertices; 
List<Edge> edges; 

} 



Face-Vertex meshes 

 Structure containing two sets 

 List of vertices 

 List of faces, where each face is given as ordered list of vertices 

 Order of vertices (edges) in face – orientation of face 

 No implicit representation of edges, but can be added 
third list of edges 

 No information of neighboring elements = slow 
topological algorithms 

 

Geometric Modeling in Graphics 

struct Vertex 
{ 
    float x, y, z; 
} 

struct Face1 
{    
    List<int> vertices; 
} 

struct Edge2 
{ 
    Vertex v1, v2; 
} 

struct Face2 
{ 
    List<Edge2> edges; 
} 

struct Mesh1 
{ 
    List<Vertex> vertices; 
    List<Face1> faces; 
} 

struct Mesh2 
{ 
    List<Vertex> vertices; 
    List<Edge2> edges; 
    List<Face2> faces; 
} 



Face-Vertex meshes 

 Minimal structure for representing vertices, edges and 

faces 

 Structure best suitable for visualization using graphics 

card and serialization using files 

 File formats for meshes – Collada, 3DS, OBJ, VRML, … 

 

Geometric Modeling in Graphics 

<mesh> 
                <source id="box-lib-positions" name="position"> 
                    <float_array id="box-lib-positions-array" count="24">-1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 -1 -1 </float_array> 
                    <technique_common> 
                        <accessor count="8" source="#box-lib-positions-array" stride="3"> 
                            <param name="X" type="float"/> 
                            <param name="Y" type="float"/> 
                            <param name="Z" type="float"/> 
                        </accessor> 
                    </technique_common> 
                </source> 
                <vertices id="box-lib-vertices"> 
                    <input semantic="POSITION" source="#box-lib-positions"/> 
                </vertices> 
                <polylist count="6" material="BlueSG"> 
                    <input offset="0" semantic="VERTEX" source="#box-lib-vertices"/> 
                    <vcount>4 4 4 4 4 4 </vcount> 
                    <p>0 2 3 1 0 1 5 4 6 7 3 2 0 4 6 2 3 7 5 1 5 7 6 4 </p> 
                </polylist> 
</mesh> 



Face-Vertex meshes 

 Visualization using modern graphics card and 3D APIs 

(Direct 3D, OpenGL, …) 

 Using simple list (array) of vertex attributes and list 

(array) of triangles (polygons) 

 Polygon is given as list of indices to vertex array 

 Use 3D API to send these arrays to graphic card 

 

Geometric Modeling in Graphics 

struct VisualizationVertex 
{ 

float x, y, z; 
// uv coordinates, normals 

} 

struct VisualizationTriangle 
{ 

int i, j, k; 
} 

struct VisualizationMesh 
{ 

int num_vertices; 
Vertex[] vertices; 
int num_triangles; 
Triangle[] triangles; 

} 



Face-Vertex meshes 

 Topological algorithms 

 

Geometric Modeling in Graphics 

Vertex Edge Face 

Vertex O(m) O(m) O(l+k) 

Edge O(1) O(m) O(l+k) 

Face O(k) O(k) O(m+k) 

• n – number of vertices 

• m – number of edges 

• l – number of faces 

• k – maximal number of vertices (edges) for face 

FaceVertexMeshFF(Face2 face, Mesh2 mesh) 
{ 
    List<Face2> result; 
    for (int i = 0; i < mesh.faces.size(); i++) 
        mesh.edges[i].f1 = mesh.edges[i].f2 = NULL; 
    for (int i = 0; i < mesh.faces.size(); i++) 
        for (int j = 0; j < mesh.faces[i].edges.size(); j++) 
        { 
             if (mesh.faces[i].edges[j].f1 == NULL)  
                 mesh.faces[i].edges[j].f1 = mesh.faces[i]; 
             else if (mesh.faces[i].edges[j].f2 == NULL)  
                 mesh.faces[i].edges[j].f2 = mesh.faces[i]; 
  
        } 
    for (int i = 0; i < face.edges.size(); i++) 
    { 
        if (face == face.edges[i].f1 && face.edges[i].f2 != NULL)  
            result.add(face.edges[i].f2); 
        if (face == face.edges[i].f2 && face.edges[i].f1 != NULL)  
            result.add(face.edges[i].f1); 
    } 
    return result; 
} 

struct Edge2 
{ 
    Vertex v1, v2; 
    Face2 f1; 
    Face2 f2; 
} 



Winged Edge 

 Structure for representing polygonal orientable 2-
manifold mesh 

 Lists of vertices, edges (winged edges), faces  

 Structure for vertex and face contains only one pointer 
to one incident edge + coordinates of vertex 

 Extended incident data for edge structure, its members 
are given by edge and polyhedron orientation  

Geometric Modeling in Graphics 

a – current edge 

X – begin vertex of current edge 

Y – end vertex of current edge 

b – previous edge in orientation from left face 

d – next edge in orientation from left face 

c – next edge in orientation from right face 

e – previous edge in orientation from right face 

1 – left face 

2 – right face 



Winged Edge 

 Possibility to store only next edges (c, d) from left and 

right faces, removing previous faces (b, e) 

 For extended meshes store one edge of each contour 

inside each face 

 Visualization & file serialization – covert between face-

vertex mesh and winged-edge mesh 

Geometric Modeling in Graphics 

struct Vertex 
{ 

float x, y, z; 
WingedEdge edge; 

} 

struct Face 
{ 

WingedEdge outer_edge; 
//List<WingedEdge> inner_edges; 

} 

struct WingedEdge 
{ 

Vertex X; 
Vertex Y; 
WingedEdge b; 
WingedEdge c; 
WingedEdge d; 
WingedEdge e; 
Face 1; 
Face 2; 

} 

struct WingedEdgeMesh 
{ 

List<Vertex> vertices; 
List<WingedEdge> edges; 
List<Face> faces; 

} 



Winged Edge example 

Geometric Modeling in Graphics 

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/winged-e.html 



Winged Edge 
 All topological algorithms in constant time, higher memory 

Geometric Modeling in Graphics 

WingedEdgeFF(Face face)  { 
WingedEdge start_edge = face.outer_edge; 
WingedEdge current_edge; 
if (start_edge.1 == face)  { 
 result.Add(start_edge.2); 
 current_edge = start_edge.d; 
} 
else if (start_edge.2 == face)  { 
 result.Add(start_edge.2); 
 current_edge = start_edge.c; 
} 
else return; 
while (current_edge != start_edge)  { 

if (current_edge.1 == face)  { 
result.Add(current_edge.2); 
current_edge = current_edge.d; 

} 
else if (current_edge.2 == face)  { 

result.Add(current_edge.1); 
current_edge = current_edge.c; 

} 
} 
return result; 

} 

WingedEdgeVE(Vertex vertex)  { 
WingedEdge start_edge = vertex.edge; 
WingedEdge current_edge; 
WingedEdge prev_edge = start_edge; 
if (vertex == start_edge.X) 
 current_edge = start_edge.d; 
else 
 current_edge = start_edge.c; 
result.Add(start_edge); 
while (current_edge != start_edge)  { 
 result.Add(current_edge); 

if (vertex == current_edge.X)  { 
if (prev_edge == current_edge.e) 
 current_edge = current_edge.d; 
else 
 current_edge = current_edge.e; 

} 
else  { 

if (prev_edge == current_edge.c) 
 current_edge = current_edge.b; 
else 
 current_edge = current_edge.c; 

} 
prev_edge = result.Last(); 

} 
return result; 

} 



Quad Edge 

 Structure used mainly for representing graphs and its dual 
graphs – flipping vertices and faces 

 Structure for vertex and face is almost the same, 
represented by same pointer 

 List od data (vertices and faces) and list of quad edges 

 New structure – half edge – connection from start vertex 
of edge to end vertex of edge or from one face to second 
face over edge 

 Half edge holds starting data pointer (element) and 
pointer to next half-edge around starting vertex or edge 

 Set of 4 half edges – quad edge 

 

 
Geometric Modeling in Graphics 



Quad Edge 

Geometric Modeling in Graphics 

struct Vertex: Data 
{ 

float x, y, z; 
HEdge edge; 

} 

struct Face: Data 
{ 

HEdge edge; 
} 

struct HEdge 
{ 

HEdge next;   // Onext 
Data data;    // vertex, face info 
QuadEdge parent; 

} 

struct QuadEdge 
{ 

HEdge e[4]; 
} 

struct QuadEdgeMesh 
{ 

List<Data> vertices_and_faces; 
List<QuadEdge> edges; 

} 

Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the manipulation of general subdivisions and the computation of Voronoi. 



Algebra on edges 

 Function for given half edge: 
 Rot – rotating half edge by 90° counterclockwise 

 Sym – symmetrical half edge 

 Next – next half edge; can be around origin, destination, left, right object of given 

half edge (Onext, Dnext, Lnext, Rnext) 

 Prev – previous half edge, again around four elements 

 Org – origin element, where half edge starts 

 Dest – destination element, where half edge ends 

 Left – element to the left of half edge 

 Right – element to the right of half edge 

Geometric Modeling in Graphics 

https://www.cs.cmu.edu/afs/andrew/scs/cs/15-463/2001/pub/src/a2/quadedge.html 



Algebra on edges 
 Rot(e) = e->parent->e[(r+1) mod 4];     // r is index of e in e->parent QuadEdge 

 Sym(e) = Rot(Rot(e)) = e->parent->e[(r+2) mod 4]; 

 Org(e) = e->data; 

 Dest(e) = Sym(e)->data; 

 Rot-1(e) = e->parent->e[(r+3) mod 4] = Rot(Rot(Rot(e))); 

 Right(e) = Rot-1(e)->data; 

 Left(e) = Rot(e)->data; 

 Onext(e) = e->next; 

 Oprev(e) = Rot(Onext(Rot(e))); 

 Dnext(e) = Sym(Onext(Sym(e))); 

 Dprev(e) = Rot-1(Onext(Rot-1(e))); 

 Lnext(e) = Rot(Onext(Rot-1(e))); 

 Lprev(e) = Sym(Onext(e)); 

 Rnext(e) = Rot-1(Onext(Rot(e))); 

 Rprev(e) = Onext(Sym(e)); 

Geometric Modeling in Graphics 

•Only Rot a Onext is needed, all 

other operators can be 

computed 

•That is reason for only next 
and parent members in 

QuadEdge structure  



Quad Edge 

Geometric Modeling in Graphics 

QuadEdgeFF(Face face) 
{ 

HEdge start_edge = face.edge; 
result.Add(Sym(start_edge).data); 
HEdge current_edge = Onext(start_edge);  // = start_edge.next 
while (current_edge && current_edge != start_edge) 
{ 
 result.Add(Sym(current_edge).data); 
 current_edge = Onext(current_edge); 
} 
return result; 

} 

QuadEdgeVE(Vertex vertex) 
{ 

HEdge start_edge = vertex.edge; 
result.Add(start_edge); 
HEdge current_edge = Onext(start_edge);  // = start_edge.next 
while (current_edge  && current_edge != start_edge) 
{ 
 result.Add(current_edge); 
 current_edge = Onext(current_edge); 
} 
return result; 

} 



Delaunay-Voronoi dual graphs 

Geometric Modeling in Graphics 



DCEL and Half-Edge 

 Solving problems with orientation in Winged Edge 

 Breaking each edge into two half-edges, „arrows“ or 
oriented edges 

 DCEL - Double Connected Edge List for 2-manifold 
polygonal mesh, contains list of vertices, faces and half 
edges 

 Each Half-edge contains 

 Pointer to opposite or twin half-edge, together they form 
whole edge, can be NULL if there is no opposite half-edge 

 Pointer to vertex where this half-edge starts (or ends) 

 Pointer to face where half-edge belongs, direction of half-edge 
is given by orientation inside this face 

 Pointer to next half-edge in orientation of half-edge’s face 

 

 

 

Geometric Modeling in Graphics 



DCEL 

 Can represents also extended polygonal meshes – face 

then contains one half-edge for each contour 

 

 

 

Geometric Modeling in Graphics 

struct Vertex 
{ 

float x, y, z; 
HalfEdge edge; 

} 

struct Face 
{ 

HalfEdge outer_edge; 
//List< HalfEdge> inner_edges; 

} 

struct HalfEdge 
{ 

Vertex origin; 
HalfEdge opp; 
HalfEdge next; 
//HalfEdge prev; 
Face face; 

} 

struct DCEL 
{ 

List<Vertex> vertices; 
List<HalfEdge> edges; 
List<Face> faces; 

} 



DCEL example 

Geometric Modeling in Graphics 



DCEL topological algorithms 

Geometric Modeling in Graphics 

HalfEdgeFF(Face face) 
{ 

HalfEdge start_edge = face.outer_edge; 
if (start_edge.opp) 
 result.Add(start_edge.opp.face); 
HalfEdge current_edge = start_edge.next; 
while (current_edge  && current_edge != start_edge) 
{ 
 result.Add(current_edge.opp.face); 
 current_edge = current_edge.next; 
} 
return result; 

} 

HalfEdgeVE(Vertex vertex) 
{ 

HalfEdge start_edge = vertex.edge; 
result.Add(start_edge); 
HalfEdge current_edge = start_edge.opp.next; 
while (current_edge  && current_edge != start_edge) 
{ 
 result.Add(current_edge); 
 current_edge = current_edge.opp.next; 
} 
return result; 

} 

All in constant time! 



Face-Vertex mesh to DCEL mesh 

 Used mainly when importing mesh from file 

 1. Copy list of vertices and faces from Face-Vertex mesh to 

DCEL mesh 

 2a. For each face traverse all edges of that face, create half edge 

for each face vertex and fill origin, next and face pointers 

 2b. While traversing faces and its vertices, remember all 

incident (incoming) half-edges for each vertex 

 3. Then for each half-edge, find opposite half-edge by searching 

incoming half-edges for origin vertex, here we need 2-manifold 

property to simple achieve this 

 4. Add one arbitrary incident half-edge for each face and vertex 

 Computational complexity is linear 

 

 

 

Geometric Modeling in Graphics 



The End 
for today 

Geometric Modeling in Graphics 


