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Part 1: Polygonal Meshes 



Geometric object 

 Set of connected points in space 

 Usually inside Euclidean space (orthonormal basis, 

coordinates, inner product, norm, distance, angle, …) 

 Topological dimension – 0D,1D, 2D, 3D objects 

 Topological dimension defined by open covers 
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Manifold 

 n-manifold – set of points locally homeomorphic to n-

dimensional Euclidean space 

 Manifold resembles Euclidean space near each point 

 For each point of n-manifold there exists his 

neighborhood homeomorphic with open n-dimensional 

ball  

 n-manifold is n dimensional object 

 Homeomorphism – continuous function with continuous 

inverse function, means topological equivalence 
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Manifolds & non-manifolds 
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Polygonal mesh 
 Boundary representation of 3D object (polyhedron) or 

representation of 2D object (surface) 

 Boundary represented as set of polygons (faces) 

 Each polygon defined by ordered set of vertices 

 Vertices – coordinates – geometric information 

 Order of vertices – topological information 

 Possible additional element = edges – connecting 2 
consecutive vertices in polygon 

 Edges are shared between several neighboring polygons 

 Boundary representation of 2D object – line loop 
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Extended polygonal mesh 

 Extended faces with holes and self intersecting edges 

 Each face is originally defined as set of contours 

 Type of representation in some modeling packages 

 Can be transformed to simplified mesh with faces 

without holes – using tessellation algorithms (GLU 

tessellation, CGAL, Visualization Library, … )  
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Polygonal mesh orientation 

 Edge orientation – order of two vertices 

 Polygon orientation – order of vertices (edges) that 
defines polygon boundary 

 Polygonal mesh orientation – given by orientation of 
faces, such that polygons on common edge have opposite 
orientation 

 If orientation exists – orientable – have both sides  

 Computation of orientable area, volume 
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Oriented Area of simple polygon  

[xi, yi] is i-th vertex 
Oriented Volume of convex polyhedron 

xi is any point of i-th face 

Ai is are of i-th face 

ni is normal of i-th face 



Euler characteristic 

 Boundary representation of 3D object using 2-manifold 

polygonal mesh 

 Oriented 2-manifold polygonal mesh  

 Works also for planar graphs 

 Genus g – number of holes in 3D object 

 V, E, F – number of vertices, edges, faces in mesh 

 V-E+F=2-2g 
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Euler characteristic 
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Polygonal mesh structures 

 Structures representing vertices, edges, faces 

 Memory complexity of structures 

 Optimizing algorithms on these structures 

 Algorithms for creation and update 

 Geometric algorithms 

 Transformations, intersections 

 Topological algorithms 

 Finding neighborhood elements 

 Visualization algorithms 

 Usually using graphics cards and 3D APIs 
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Topological algorithms 

 Find elements (vertices, edges, faces) that are connected 

with given element 

 Connected through k other elements = searching in k-

ring neighborhood 

 Used frequently in many modeling algorithms 
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Vertex Edge Face 

Vertex VV VE VF 

Edge EV EE EF 

Face FV FE FF 
subdivision surfaces computation of vertex normals 



Edge-Vertex meshes 

 Simple representation of polygonal mesh 

 Structure containing two sets 

 List of vertices 

 List of edges, where each edge is given by two vertices = two 
pointers to list of vertices, several types of pointer 

 No implicit representation of faces 

 No information of neighboring elements = slow 
topological algorithms 
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struct Vertex 
{ 

float x, y, z; 
} 

struct Edge1 
{ 

float x1, y1, z1; 
float x2, y2, z2; 

} 

struct Edge2 
{ 

int i1; 
int i2; 

} 

struct Edge3 
{ 

Vertex v1; 
Vertex v2; 

} 

struct Mesh 
{ 

List<Vertex> vertices; 
List<Edge> edges; 

} 



Face-Vertex meshes 

 Structure containing two sets 

 List of vertices 

 List of faces, where each face is given as ordered list of vertices 

 Order of vertices (edges) in face – orientation of face 

 No implicit representation of edges, but can be added 
third list of edges 

 No information of neighboring elements = slow 
topological algorithms 
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struct Vertex 
{ 
    float x, y, z; 
} 

struct Face1 
{    
    List<int> vertices; 
} 

struct Edge2 
{ 
    Vertex v1, v2; 
} 

struct Face2 
{ 
    List<Edge2> edges; 
} 

struct Mesh1 
{ 
    List<Vertex> vertices; 
    List<Face1> faces; 
} 

struct Mesh2 
{ 
    List<Vertex> vertices; 
    List<Edge2> edges; 
    List<Face2> faces; 
} 



Face-Vertex meshes 

 Minimal structure for representing vertices, edges and 

faces 

 Structure best suitable for visualization using graphics 

card and serialization using files 

 File formats for meshes – Collada, 3DS, OBJ, VRML, … 
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<mesh> 
                <source id="box-lib-positions" name="position"> 
                    <float_array id="box-lib-positions-array" count="24">-1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 -1 -1 </float_array> 
                    <technique_common> 
                        <accessor count="8" source="#box-lib-positions-array" stride="3"> 
                            <param name="X" type="float"/> 
                            <param name="Y" type="float"/> 
                            <param name="Z" type="float"/> 
                        </accessor> 
                    </technique_common> 
                </source> 
                <vertices id="box-lib-vertices"> 
                    <input semantic="POSITION" source="#box-lib-positions"/> 
                </vertices> 
                <polylist count="6" material="BlueSG"> 
                    <input offset="0" semantic="VERTEX" source="#box-lib-vertices"/> 
                    <vcount>4 4 4 4 4 4 </vcount> 
                    <p>0 2 3 1 0 1 5 4 6 7 3 2 0 4 6 2 3 7 5 1 5 7 6 4 </p> 
                </polylist> 
</mesh> 



Face-Vertex meshes 

 Visualization using modern graphics card and 3D APIs 

(Direct 3D, OpenGL, …) 

 Using simple list (array) of vertex attributes and list 

(array) of triangles (polygons) 

 Polygon is given as list of indices to vertex array 

 Use 3D API to send these arrays to graphic card 
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struct VisualizationVertex 
{ 

float x, y, z; 
// uv coordinates, normals 

} 

struct VisualizationTriangle 
{ 

int i, j, k; 
} 

struct VisualizationMesh 
{ 

int num_vertices; 
Vertex[] vertices; 
int num_triangles; 
Triangle[] triangles; 

} 



Face-Vertex meshes 

 Topological algorithms 
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Vertex Edge Face 

Vertex O(m) O(m) O(l+k) 

Edge O(1) O(m) O(l+k) 

Face O(k) O(k) O(m+k) 

• n – number of vertices 

• m – number of edges 

• l – number of faces 

• k – maximal number of vertices (edges) for face 

FaceVertexMeshFF(Face2 face, Mesh2 mesh) 
{ 
    List<Face2> result; 
    for (int i = 0; i < mesh.faces.size(); i++) 
        mesh.edges[i].f1 = mesh.edges[i].f2 = NULL; 
    for (int i = 0; i < mesh.faces.size(); i++) 
        for (int j = 0; j < mesh.faces[i].edges.size(); j++) 
        { 
             if (mesh.faces[i].edges[j].f1 == NULL)  
                 mesh.faces[i].edges[j].f1 = mesh.faces[i]; 
             else if (mesh.faces[i].edges[j].f2 == NULL)  
                 mesh.faces[i].edges[j].f2 = mesh.faces[i]; 
  
        } 
    for (int i = 0; i < face.edges.size(); i++) 
    { 
        if (face == face.edges[i].f1 && face.edges[i].f2 != NULL)  
            result.add(face.edges[i].f2); 
        if (face == face.edges[i].f2 && face.edges[i].f1 != NULL)  
            result.add(face.edges[i].f1); 
    } 
    return result; 
} 

struct Edge2 
{ 
    Vertex v1, v2; 
    Face2 f1; 
    Face2 f2; 
} 



Winged Edge 

 Structure for representing polygonal orientable 2-
manifold mesh 

 Lists of vertices, edges (winged edges), faces  

 Structure for vertex and face contains only one pointer 
to one incident edge + coordinates of vertex 

 Extended incident data for edge structure, its members 
are given by edge and polyhedron orientation  
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a – current edge 

X – begin vertex of current edge 

Y – end vertex of current edge 

b – previous edge in orientation from left face 

d – next edge in orientation from left face 

c – next edge in orientation from right face 

e – previous edge in orientation from right face 

1 – left face 

2 – right face 



Winged Edge 

 Possibility to store only next edges (c, d) from left and 

right faces, removing previous faces (b, e) 

 For extended meshes store one edge of each contour 

inside each face 

 Visualization & file serialization – covert between face-

vertex mesh and winged-edge mesh 
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struct Vertex 
{ 

float x, y, z; 
WingedEdge edge; 

} 

struct Face 
{ 

WingedEdge outer_edge; 
//List<WingedEdge> inner_edges; 

} 

struct WingedEdge 
{ 

Vertex X; 
Vertex Y; 
WingedEdge b; 
WingedEdge c; 
WingedEdge d; 
WingedEdge e; 
Face 1; 
Face 2; 

} 

struct WingedEdgeMesh 
{ 

List<Vertex> vertices; 
List<WingedEdge> edges; 
List<Face> faces; 

} 



Winged Edge example 
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http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/winged-e.html 



Winged Edge 
 All topological algorithms in constant time, higher memory 
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WingedEdgeFF(Face face)  { 
WingedEdge start_edge = face.outer_edge; 
WingedEdge current_edge; 
if (start_edge.1 == face)  { 
 result.Add(start_edge.2); 
 current_edge = start_edge.d; 
} 
else if (start_edge.2 == face)  { 
 result.Add(start_edge.2); 
 current_edge = start_edge.c; 
} 
else return; 
while (current_edge != start_edge)  { 

if (current_edge.1 == face)  { 
result.Add(current_edge.2); 
current_edge = current_edge.d; 

} 
else if (current_edge.2 == face)  { 

result.Add(current_edge.1); 
current_edge = current_edge.c; 

} 
} 
return result; 

} 

WingedEdgeVE(Vertex vertex)  { 
WingedEdge start_edge = vertex.edge; 
WingedEdge current_edge; 
WingedEdge prev_edge = start_edge; 
if (vertex == start_edge.X) 
 current_edge = start_edge.d; 
else 
 current_edge = start_edge.c; 
result.Add(start_edge); 
while (current_edge != start_edge)  { 
 result.Add(current_edge); 

if (vertex == current_edge.X)  { 
if (prev_edge == current_edge.e) 
 current_edge = current_edge.d; 
else 
 current_edge = current_edge.e; 

} 
else  { 

if (prev_edge == current_edge.c) 
 current_edge = current_edge.b; 
else 
 current_edge = current_edge.c; 

} 
prev_edge = result.Last(); 

} 
return result; 

} 



Quad Edge 

 Structure used mainly for representing graphs and its dual 
graphs – flipping vertices and faces 

 Structure for vertex and face is almost the same, 
represented by same pointer 

 List od data (vertices and faces) and list of quad edges 

 New structure – half edge – connection from start vertex 
of edge to end vertex of edge or from one face to second 
face over edge 

 Half edge holds starting data pointer (element) and 
pointer to next half-edge around starting vertex or edge 

 Set of 4 half edges – quad edge 
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Quad Edge 
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struct Vertex: Data 
{ 

float x, y, z; 
HEdge edge; 

} 

struct Face: Data 
{ 

HEdge edge; 
} 

struct HEdge 
{ 

HEdge next;   // Onext 
Data data;    // vertex, face info 
QuadEdge parent; 

} 

struct QuadEdge 
{ 

HEdge e[4]; 
} 

struct QuadEdgeMesh 
{ 

List<Data> vertices_and_faces; 
List<QuadEdge> edges; 

} 

Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the manipulation of general subdivisions and the computation of Voronoi. 



Algebra on edges 

 Function for given half edge: 
 Rot – rotating half edge by 90° counterclockwise 

 Sym – symmetrical half edge 

 Next – next half edge; can be around origin, destination, left, right object of given 

half edge (Onext, Dnext, Lnext, Rnext) 

 Prev – previous half edge, again around four elements 

 Org – origin element, where half edge starts 

 Dest – destination element, where half edge ends 

 Left – element to the left of half edge 

 Right – element to the right of half edge 
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https://www.cs.cmu.edu/afs/andrew/scs/cs/15-463/2001/pub/src/a2/quadedge.html 



Algebra on edges 
 Rot(e) = e->parent->e[(r+1) mod 4];     // r is index of e in e->parent QuadEdge 

 Sym(e) = Rot(Rot(e)) = e->parent->e[(r+2) mod 4]; 

 Org(e) = e->data; 

 Dest(e) = Sym(e)->data; 

 Rot-1(e) = e->parent->e[(r+3) mod 4] = Rot(Rot(Rot(e))); 

 Right(e) = Rot-1(e)->data; 

 Left(e) = Rot(e)->data; 

 Onext(e) = e->next; 

 Oprev(e) = Rot(Onext(Rot(e))); 

 Dnext(e) = Sym(Onext(Sym(e))); 

 Dprev(e) = Rot-1(Onext(Rot-1(e))); 

 Lnext(e) = Rot(Onext(Rot-1(e))); 

 Lprev(e) = Sym(Onext(e)); 

 Rnext(e) = Rot-1(Onext(Rot(e))); 

 Rprev(e) = Onext(Sym(e)); 
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•Only Rot a Onext is needed, all 

other operators can be 

computed 

•That is reason for only next 
and parent members in 

QuadEdge structure  



Quad Edge 
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QuadEdgeFF(Face face) 
{ 

HEdge start_edge = face.edge; 
result.Add(Sym(start_edge).data); 
HEdge current_edge = Onext(start_edge);  // = start_edge.next 
while (current_edge && current_edge != start_edge) 
{ 
 result.Add(Sym(current_edge).data); 
 current_edge = Onext(current_edge); 
} 
return result; 

} 

QuadEdgeVE(Vertex vertex) 
{ 

HEdge start_edge = vertex.edge; 
result.Add(start_edge); 
HEdge current_edge = Onext(start_edge);  // = start_edge.next 
while (current_edge  && current_edge != start_edge) 
{ 
 result.Add(current_edge); 
 current_edge = Onext(current_edge); 
} 
return result; 

} 



Delaunay-Voronoi dual graphs 
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DCEL and Half-Edge 

 Solving problems with orientation in Winged Edge 

 Breaking each edge into two half-edges, „arrows“ or 
oriented edges 

 DCEL - Double Connected Edge List for 2-manifold 
polygonal mesh, contains list of vertices, faces and half 
edges 

 Each Half-edge contains 

 Pointer to opposite or twin half-edge, together they form 
whole edge, can be NULL if there is no opposite half-edge 

 Pointer to vertex where this half-edge starts (or ends) 

 Pointer to face where half-edge belongs, direction of half-edge 
is given by orientation inside this face 

 Pointer to next half-edge in orientation of half-edge’s face 
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DCEL 

 Can represents also extended polygonal meshes – face 

then contains one half-edge for each contour 
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struct Vertex 
{ 

float x, y, z; 
HalfEdge edge; 

} 

struct Face 
{ 

HalfEdge outer_edge; 
//List< HalfEdge> inner_edges; 

} 

struct HalfEdge 
{ 

Vertex origin; 
HalfEdge opp; 
HalfEdge next; 
//HalfEdge prev; 
Face face; 

} 

struct DCEL 
{ 

List<Vertex> vertices; 
List<HalfEdge> edges; 
List<Face> faces; 

} 



DCEL example 
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DCEL topological algorithms 
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HalfEdgeFF(Face face) 
{ 

HalfEdge start_edge = face.outer_edge; 
if (start_edge.opp) 
 result.Add(start_edge.opp.face); 
HalfEdge current_edge = start_edge.next; 
while (current_edge  && current_edge != start_edge) 
{ 
 result.Add(current_edge.opp.face); 
 current_edge = current_edge.next; 
} 
return result; 

} 

HalfEdgeVE(Vertex vertex) 
{ 

HalfEdge start_edge = vertex.edge; 
result.Add(start_edge); 
HalfEdge current_edge = start_edge.opp.next; 
while (current_edge  && current_edge != start_edge) 
{ 
 result.Add(current_edge); 
 current_edge = current_edge.opp.next; 
} 
return result; 

} 

All in constant time! 



Face-Vertex mesh to DCEL mesh 

 Used mainly when importing mesh from file 

 1. Copy list of vertices and faces from Face-Vertex mesh to 

DCEL mesh 

 2a. For each face traverse all edges of that face, create half edge 

for each face vertex and fill origin, next and face pointers 

 2b. While traversing faces and its vertices, remember all 

incident (incoming) half-edges for each vertex 

 3. Then for each half-edge, find opposite half-edge by searching 

incoming half-edges for origin vertex, here we need 2-manifold 

property to simple achieve this 

 4. Add one arbitrary incident half-edge for each face and vertex 

 Computational complexity is linear 
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The End 
for today 
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