
Geometric 

Modeling 

 in Graphics 

Martin Samuelčík 

www.sccg.sk/~samuelcik 

samuelcik@sccg.sk 

Part 2: Meshes properties 



Meshes properties 
 Working with DCEL representation  

 One connected component with simple polygons 

 Basic properties of mesh used in modeling 
 Orientation 

 Area, volume 

 Normal 

 Curvature 

 Interior & exterior 

 Intersections 

 Distances 

 Descriptor & comparison 

 Parametrization 

 Bounding box 

 Skeleton 

 … 

Geometric Modeling in Graphics 



DCEL mesh orientation 

 Given by order of vertices in faces = order of half edges 

in faces 

 For each half edge, its opposite half edge must have 

flipped orientation = opposite half edges can not have 

same origin vertex 

 Fixing orientation – making proper orientation in faces, if 

possible 

Geometric Modeling in Graphics 



DCEL mesh orientation fix 

Geometric Modeling in Graphics 

FixOrientation(DCEL mesh) 
{ 
    List<Face> processed_faces; 
    Face current_face = mesh.faces[0]; 
    while (current_face != null) 
    { 
        HalfEdge current_edge = current_face.edge; 
        do 
        { 
             int num_flip_edges = 0, num_noflip_edges = 0; 
             if (current_edge.opp != null &&  
                 processed_faces.Contains(current_edge.opp.face)) 
             { 
                  if (current_edge.origin == current_edge.opp.origin) 
                      num_flip_edges++; 
                  else 
                      num_noflip_edges++; 
             } 
             current_edge = current_edge.next; 
        } 
        while (current_edge != current_face.edge) 
        if (num_flip_edges > 0 && num_noflip_edges > 0) 
            return false; 
        if (num_flip_edges > 0) 
            FlipOrientation(current_face); 
        processed_faces.Add(current_face); 
        current_face = GetNextUnprocessedFace(processed_faces); 
    } 
    return true; 
} 

FlipOrientation(Face face) 
{ 
    HalfEdge current_edge = face.edge; 
    HalfEdge prev_edge = null; 
    do 
    { 
         HalfEdge old_next = current_edge.next; 
         if (prev_edge != null) current_edge.next = prev_edge; 
         current_edge.origin = old_next.origin; 
         current_edge.origin.edge = current_edge; 
         prev_edge = current_edge; 
         current_edge = old_next; 
    } 
    while (current_edge != face.edge) 
    face.edge = prev_edge; 
} 

GetNextUnprocessedFace(List<Face> processed_faces) 
{ 
    foreach (Face face in processed_faces) 
    { 
        HalfEdge current_edge = face.edge; 
        do 
        { 
             if (current_edge.opp != null && 
                 !processed_faces.Contains(current_edge.opp.face)) 
                 return current_edge.opp.face; 
             current_edge = current_edge.next; 
        } 
        while (current_edge != face.edge) 
    } 
    return null; 
} 



Mesh area 
 Mesh area - sum of areas for polygons 

 For triangle, (oriented) area A using cross product 

 

 

 Oriented area A for simple polygon in 2D 

 

 

 

 Oriented area A for simple polygon in 3D 

Geometric Modeling in Graphics 

http://geomalgorithms.com/a01-_area.html 



Mesh normals 
 Unit vector perpendicular to plane 

 Normal of tangent plane of point on surface 

 For geometric normal, derivation at point is needed 

 Face normal 

 Oriented normal of face plane 

 Direction given by orientation of face 

 Used for determining side of face (face culling, interior, …) 

 Vertex pseudo-normal 

 Attribute of vertex 

 No derivation in vertex - normal of some approximation 
surface passing vertex 

 Used for modeling and visualization (illumination models, …) 

 Not always given by geometric properties 

Geometric Modeling in Graphics 



Face normal 

 For triangle, determined by cross product 

 If given triangle ABC (in this order), then face normal N is 

computed as cross product of AB and AC (in this order) 

 General face normal N for (nonplanar) polygon 

(P1,P2,…,Pn) 

Geometric Modeling in Graphics 

Pi=[xi, yi, zi], i=1,2,…,n 

N=[Nx, Ny, Nz] 

 

Nx = Σ (yj – yi)(zj + zi)  

Ny = Σ (zj – zi)(xj + xi)  

Nz = Σ (xj – xi)(yj + yi) 

 

j= (i+1) mod n   



Vertex normal 

 Usually computed as weighted average of adjacent faces 

 Weight of i-th face Fi 

 wi=1 

 wi = Area(Fi)  

 wi = Angle(Fi, v) 

 Weights must be normalized 

Geometric Modeling in Graphics 

ComputeVertexNormalAreaWeights(Vertex v) 
{ 
     Vector N(0, 0, 0); 
     float total_weight = 0; 
     HalfEdge current_edge = v.edge; 
     do 
     { 
          float wi = FaceArea(current_edge.face); 
          total_weight += wi; 
          N += wi * ComputeFaceNormal(current_edge.face); 
          if (current_edge.opp == null) 
              break; 
          current_edge = current_edge.opp.next; 
     } 
     while (current_edge != v.edge); 
     current_edge = v.edge.prev.opp; 
     do 
     { 
          if (current_edge == null) break; 
          float wi = FaceArea(current_edge.face); 
          total_weight += wi; 
          N += wi * ComputeFaceNormal(current_edge.face); 
          if (current_edge.prev.opp == null) 
              break; 
          current_edge = current_edge.prev.opp; 
     } 
     while (current_edge != v.edge); 
     return Normalize(N / total_weight); 
} 



Curvature 

 How much is curve or surface curved at given point 

 Curves 

 Straight line has curvature equal to 0 

 At given point, best possible circle is fitted 

 Curvature is reciprocal of fitted circle radius 

 For computation, second order derivation is needed 

 

 Surfaces 

 At given point, and given tangent vector, curvature of all curves 
passing that point with that tangent vector is the same 

 There is maximum and minimum of all tangent curvatures – 
principal curvatures k1, k2 

 Gaussian curvature K = k1.k2, mean curvature H = 0.5*(k1+k2) 

Geometric Modeling in Graphics 



Mesh curvature 

 Polygonal esh – no first and second order derivation on 

edges and at vertices 

 Curvature equal to 0 inside faces 

 „Curvature“ at vertex – curvature of some interpolation 

surface at vertex 

 Gaussian curvature for triangle meshes 

 

 Mean curvature for triangle meshes 

Geometric Modeling in Graphics 

ftp://ftp.disi.unige.it/person/MagilloP/PDF/lncs2012.pdf 



Mesh curvatures 

Geometric Modeling in Graphics 

http://graphics.ucsd.edu/~iman/Curvature/ 

http://graphics.ucsd.edu/~iman/Curvature/mean_curvature.png
http://graphics.ucsd.edu/~iman/Curvature/gaussian_curvature.png
http://graphics.ucsd.edu/~iman/Curvature/min_curvature.png
http://graphics.ucsd.edu/~iman/Curvature/max_curvature.png


Closed mesh 

 Mesh dividing space to two sets, interior and exterior 

 Interior and exterior should be non-empty sets 

 Unclosed mesh has some holes, and has some boundary 

edges – edges with only one adjacent face 

 Mesh in DCEL representation is closed if all opposite 

pointers in all half edges are non-null 

 

Geometric Modeling in Graphics 



Interior determination 

 Check if given point in interior or exterior set of mesh 

 1. Cast ray from point, if it hits mesh in odd number if 

intersections, it is inside mesh, and outside otherwise 

 

 

 2. Find closest point C of given point P on mesh, then use 

dot product of P-C and normal in C to determine if it is 

inside or outside. Use angle-weighted pseudo normal if C 

is vertex or on edge of mesh. 

Geometric Modeling in Graphics 



Ray-mesh intersections 

 Finding intersections of ray and polygons of mesh 

 Counting intersections on edges and in vertices only once 

 Usually checking for intersection of ray and triangle 

 Using acceleration structures 

 Uniform grid 

 Octree 

 kd-tree 

 Bounding volumes hierarchy 

 

 

Geometric Modeling in Graphics 



Ray-triangle intersection 

 Find intersection of ray and plane 

 Ray: P=P0+tV 

 Plane:  P.N+d=0 

 t=-(P0.N+d)/(V.N) 

 Find if intersection point lies inside triangle 

 A,B,C – coordinates of triangle vertices 

 P=uA+vB+wC, u+v+w=1, barycentric coordinates 

 Three equations, three variables u,v,w 

 If 0 <= u,v,w ,= 1, then P is inside ABC 

 Optimized computations 

 https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbo
re_intersection_algorithm 

 

Geometric Modeling in Graphics 

https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm


Kd-tree 

 Probably fastest supporting structure for ray-mesh intersection  

 http://dcgi.felk.cvut.cz/home/havran/phdthesis.html 

 Binary tree structure, each node containing one dividing plane 
perpendicular to one coordinate axis – each node represents 
axis-aligned convex area of space 

 Polygons of mesh are stored only in leafs 

 All polygons stored in subtree of a node are inside of the node 

area 

 When finding intersections of ray and mesh, first kd-tree is 

traversed and only nodes intersecting with ray are visited 

 Ray-polygon intersections are computed only for visited leafs 

 Used also for set of meshes 

Geometric Modeling in Graphics 

http://dcgi.felk.cvut.cz/home/havran/phdthesis.html
http://dcgi.felk.cvut.cz/home/havran/phdthesis.html
http://dcgi.felk.cvut.cz/home/havran/phdthesis.html


Kd-tree 

Geometric Modeling in Graphics 

KdTreeNodeConstruct(D, dim, d) 
{ 
    if (|D| = 0)  return null; 
    v = new KdTreeNode; 
    v->dim = dim; 
    if (|D| <= THRESHOLD) 
    { 
        v->data = D.Elements; 
        v->left = null; 
        v->right = null; 
        return v; 
    } 
    v->data = null; 
    v->split = D.ComputeSplitValue(dim); 
    D<s = D.Left(dim, v->split); 
    D>s = D.Right(dim, v->split); 
    j = (dim + 1) mod d;  
    v->left = KdTreeNodeConstruct(D<s, j); 
    v->right = KdTreeNodeConstruct(D>s, j); 
    return v; 
} 

struct KdTreeNode 
{ 
    float  split; 
    int dim; 
    List<Face> data; 
    KdTreeNode * left; 
    KdTreeNode * right; 
    KdTreeNode * parent; 
} 

KdTreeConstruct(S, d) 
{ 
    T = new KdTree; 
    T->root = KdTreeNodeConstruct(S, 0, d); 
    return T; 
} 

struct KdTree 
{ 
    KdTreeNode * root; 
} 



Kd-tree 

Geometric Modeling in Graphics 



Mesh descriptors 

 Describing mesh using small number of numbers – 

descriptor vector 

 If description vectors are same, then meshes should be 

same and vice versa 

 Similar meshes has similar vector using some vectors 

comparison metrics 

 Used for mesh comparisons, shape recognition, shape 

retrieval, … 

 Transformation invariance 

 http://web.ist.utl.pt/alfredo.ferreira/publications/DecorAR-

Surveyon3DShapedescriptors.pdf 

Geometric Modeling in Graphics 

http://web.ist.utl.pt/alfredo.ferreira/publications/DecorAR-Surveyon3DShapedescriptors.pdf
http://web.ist.utl.pt/alfredo.ferreira/publications/DecorAR-Surveyon3DShapedescriptors.pdf
http://web.ist.utl.pt/alfredo.ferreira/publications/DecorAR-Surveyon3DShapedescriptors.pdf
http://web.ist.utl.pt/alfredo.ferreira/publications/DecorAR-Surveyon3DShapedescriptors.pdf


Shape Contexts 

 Divide space into smaller number of bins, centered at 

local point or global center 

 Prepare normalized histogram for number of mesh 

vertices inside bins 

 Global 

 Uniform grid over whole mesh 

 Count number of vertices for each cell (bin) 

 Normalized count is descriptor vector 

 Local 

 Put disc grid at each vertex location and count number of 

vertices in local neighborhood 

 

Geometric Modeling in Graphics 



Hausdorff distance 

 Point-mesh distance (point x, mesh A) 

 d(x,A) = inf{d(x,y);y in A}; 

 Mesh-mesh Hausdorff distance (mesh A, mesh B) 

 d(A,B) = sup{d(x,B);x in A} 

 Symmetrical mesh-mesh Hausdorff distance (mesh A, mesh B) 

 h(A,B) = max{d(A,B),d(B,A)} 

 If 0, meshes are identical 

 Higher distance = meshes are more different 

 For computation, acceleration structures like uniform grid, 

octree, kd-tree are used 

 http://www.cmap.polytechnique.fr/~peyre/cours/x2005signal/m

esh_mesh.pdf 

 
Geometric Modeling in Graphics 

http://www.cmap.polytechnique.fr/~peyre/cours/x2005signal/mesh_mesh.pdf
http://www.cmap.polytechnique.fr/~peyre/cours/x2005signal/mesh_mesh.pdf
http://www.cmap.polytechnique.fr/~peyre/cours/x2005signal/mesh_mesh.pdf


Hausdorff distance 

 http://meshlabstuff.blogspot.sk/2010/01/measuring-

difference-between-two-meshes.html 

Geometric Modeling in Graphics 

http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://meshlabstuff.blogspot.sk/2010/01/measuring-difference-between-two-meshes.html
http://4.bp.blogspot.com/_HhP1_0uO1dY/S0pzrtyZUcI/AAAAAAAAAbU/MkyWBAn6Hrw/s1600-h/happy_vripSnap01.png
http://2.bp.blogspot.com/_HhP1_0uO1dY/S0pz4BP9o6I/AAAAAAAAAbc/EWBvGx5zX4g/s1600-h/happy_vripSnap03.png
http://4.bp.blogspot.com/_HhP1_0uO1dY/S0pzko0hXpI/AAAAAAAAAbM/uGEfKZxKXv0/s1600-h/happy_vripSnap00.png


Mesh bounding box 

 Finding tight bounding box for mesh and principal direction 

 Using PCA (Principal component analysis) 

 Using vertices of mesh Vi=[xi,yi,zi] 

 http://jamesgregson.blogspot.sk/2011/03/latex-test.html 

 1. Compute mean position for each coordinate 

 

 2. Compute covariance matrix C 

 

 3. Find eigenvectors of covariance matrix C 

 4. Eigenvectors form orthogonal frame                                   
of oriented bounding box 

 
Geometric Modeling in Graphics 

http://jamesgregson.blogspot.sk/2011/03/latex-test.html
http://jamesgregson.blogspot.sk/2011/03/latex-test.html
http://jamesgregson.blogspot.sk/2011/03/latex-test.html
http://jamesgregson.blogspot.sk/2011/03/latex-test.html


Mesh bounding box 

 Using triangles instead of vertices,  Ai is are of i-th triangle, 

Am is area of entire mesh, p,q,r are vertices of i-th triangle 

 

 

 Using only vertices or triangles from convex hull of mesh 

 Using only one eigenvector from PCA, other 2 directions 

are computed using 2D PCA from projected vertices 

Geometric Modeling in Graphics 

 

 

OBB fit using points 

 

 

    OBB fit using triangles 

 

 

OBB fit using convex hull 



Mesh parameterization 

 Polygonal mesh – 2D object, manifold 

 Parameterization – finding bijective mapping of 2D plane and 
polygonal mesh 

 Usually defined by putting 2 coordinates (u,v) at each vertex – 
defining coordinates of vertex in 2D space 

 2D coordinates of points inside faces are computed using 
interpolation 

 https://igl.ethz.ch/teaching/tau/adv_cg/Parameterization03_I.ppt 

 Usage 

 Texture mapping 

 Mesh editing 

 Morphing 

 Animation 

 

 
Geometric Modeling in Graphics 

https://igl.ethz.ch/teaching/tau/adv_cg/Parameterization03_I.ppt
https://igl.ethz.ch/teaching/tau/adv_cg/Parameterization03_I.ppt


Basic parameterizations 

 Computing u,v for each vertex Vi 

 Planar 

 Given plane by origin O and two orthonormal vector X,Y 

 u = (Vi-O)•X, v=(Vi-O) •Y 

 Spherical 

 Given origin O 

 r=|Vi-O|, u=atan(Vix-Ox)/(Viy-Oy)), v=acos((Viz-Oz)/r) 

 Cylindrical 

 Given origin O 

 R=sqrt((Viz-Ox)
2+(Viy-Oy)

2), u=asin((Viy-Oy)/r),v=Viz-Oz 

 

 
Geometric Modeling in Graphics 



Basic parameterizations 

 http://blog.digitaltutors.com/understanding-uvs-love-them-

or-hate-them-theyre-essential-to-know/ 

 

Geometric Modeling in Graphics 

http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/
http://blog.digitaltutors.com/understanding-uvs-love-them-or-hate-them-theyre-essential-to-know/


The End 
for today 

Geometric Modeling in Graphics 


