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Geometric
Modeling
in Graphics

Part 6: Curves

Martin Samuelcik
www.sccg.sk/~samuelcik
samuelcik@sccg.sk




Curve

» 1D set of points, embedded in space X (EZ, E3)
»R— X

» Parametric curves
Set of all points X € X such that X = f(t), t € <a,b>
Line: X =S +tD,t € R, S - start point, D - direction vector
Circle in 2D: X= (r.cos t, r.sin t), t € <0,2rt>, r — radius

» Implicit curves
Set of all points X € E2 such that f(X)=0

Line: (X-P).N=0, P - any point on line, N - normal of line, inner
product

Line in 2D: ax+by+c =0
Circle: [ X-C|-r=0, C-center, r-radius
Circle in 2D: (x-cx)?+(y-cy)?-r=0
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Parametric curve
» Suitable for many modeling algorithms

» Given parametrization — easy ,,walk™ on curve, easy to
generate points on curve

» Visualization

Approximation with piecewise linear curve — polyline

Given domain interval <a,b>, choose sample values a=t, < t, <
t, <..<t =b

Compute sample curve points Fy=f(t,), F,=f(t,),....F,,=f(t..),
draw polyline Fy, F,...,F
Parameter m — quality of sampling, approzimation, visualization
Uniform sampling: t. = a+i(b-a)/m, i=0,1,...,m

Adaptive sampling: compute t, based on curve parameters, for
example curvature
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Curve adaptive sampling

» |.Starting with domain — interval <a,b>

» 2.For current interval <u,v>, choose value w at random,
w=u+d.(v-u), d is picked at random from <0.45,0.55>

Store u,v as sampling values
Check if curve for <u,v> is flat enough by computing P=f(u),
Q=f(v), R=f(w) and using criterion

Area of triangle PQR is small

Angle PRQ is large enough

R is close to chord PQ

Tangents of curve at BQ,R are approximately parallel

If curve is not flat enough at <u,v>, divide it into two intervals
<u,w>,<w,v> and recursivly call 2. for both

» 3. Organize generated sampling values in one sequence

Geometric Modeling in Graphics



Parametric curve sampling
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https://www.researchgate.net/publication/2757679_IV4_Adaptive_Sampling_of_Parametric_Curves
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Polynomial curve

» Parametric curve where f is polynomial function

» Popular parametric representation due to fast and easy
computation

» In modelling, usually only order up to 3 is used

» Extended to rational curve — fraction of two polynomials
Circle in 2D: f(t)=((1-t2)/(1+t?), 2t/(1 +t?)),t e R

y

1-£ 2t
(1+t2 T14+£ )
0,0

T
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Polynomial curve

» Several forms of polynomial basis

» Monomial basis
f(t)=V,+V t+V,t2+.. +V t" t € <a,b>
V, - control point,V,..,V, - control vectors
Not very suitable for geometric modeling

» Newton, Lagrange interpolation basis

» Bernstein basis, Bezier curve
f(t)=B"(t)=V,B",(t)+...V B" (t),t € <0,1>
Vo V5., ¥, — control points

» Hermite basis, Cubic Hermite curve
f())=H>()=VoH o () +ToH? () + T, H>,()+V H%;(t), t € <0, 1>
V, V, - interpolated control points, T,, T| — tangent vectors
H3,(t)=2t3-3t2+ 1, H3 (t)=t3-2t2+t, H3,(t)=t3-t2, H3,(t)=-2¢3+3¢?

B! (r){ﬂf (15"
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Bezier curve

» Approximation curve — mimicking shape of control polyline
» First and last control points (V,,V,) are interpolated
» n.(V,-Vy),n.(V,-V, |) are tangent vectors inV,V_

» De Casteljau algorithm

Recursively computing point on curve for parameter t

VO.(t)=V,1=0,...,n

Vi(©)=(1-t)VIr (t)+tVi-  (¢),i=0,...,n-j,j=1,...n,

B (£)=V"y(t)

V-l (1)-Vl o (t) is tangent vector at B"(t)

Decomposing curve to 2 Bezier curves, subdivision algorithm
V() V() VA(0),. ..V (1)
VIR0V Ve, (0)... VO (1)
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Bezier curve

0.8f

0.6

0.4

0.2

% 0.2 0.4 0.6 08 1

Geometric Modeling in Graphics



Spline curve

» Simple polynomial curve & many control points = high
order of polynomials = slow computation

» Sticking together polynomial curves of small order -
piecewise polynomial curve, consists of polynomial
segments, segments meet at knots

» Representing each segment separately vs whole spline
curve representation

» Expecting order of continuity at knots
C% — end point of first segment is equal to start point of second

C' — tangent vector at end point of first segment is equal to
tangent vector at start point of second segment

G' — tangent vector at end point of first segment is
multiplication of tangent vector at start point of second
segment
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Spline curve
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Bezier spline curve

» Each segment is represented as Bezier curve
» Usually linear; quadratic or cubic segments
» CO continuous Bezier spline — polybezier, beziergon

» C! continuous Bezier cubic spline
Given verticesVy,V,V,,...,V ,n=3k
Vo V3, Vg,..., V3, — interpolated vertices
V;,=0.5V;, +0.5V, .,

» Used in PostScript, PDF, .ttf, OpenType, SVG, ...
SN 0
AN ]

] g P, P
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Hermite cubic spline curve

» Given vertex points V,,V,, ...,V , tangent vectors T, T, ...,
T, and knot parameters t, <t, < ... <t

» Interpolation curve, interpolating each given vertexV, and
maintaining T. as tangent vector atV,

» Interpolation of tangents - C! continuity
» Used mainly for animation curves

» Each segment is polynomial and represented in Hermite
cubic curve form

For t € <t,,t,>, pick span j such that t € <t,t;, >
s = (t-t)/(t4-t)
H(1)=5,(s)=V\Ho(s)+ TjH? () +T . | H(s) Vs H5(s)
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Hermite cubic spline curve

» Automatic computation of tangent vectors from given
points and knot parameters

» Finite difference

Vis1=Vk  Vi=Vi—
Tk:()ls(k+1 kK Vk k1)
Ce+1— Lk te—lk—1
» Cardinal spline

V —Vi_
Tk — (1 L C) k+1 k-1
tk+1—tk-1

C - tension

» Catmull-Rom spline
T = Vi+1—Vik-1
=
Le+1—lk—1
» Kochanek-Bartels spline
_ (1-0)(1+b)(1+¢) (1-t)(1-b)(1—c)

T = x (Tie = The—1) + - (Tk+1 = Tk)

¢ — continuity, b — bias, t — tension
Geometric Modeling in Graphics




Hermite cubic spline curve

» Computation of knot parameters
Uniform:t, = k

Length:t, = 0,¢t, = t_,+|V,-V, ||

Finite difference spline

Kochanek-Bartels spline
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B-spline curve
» Compact representation of approximating spline curves

» Input
Polynomials degree d
Control points V,,V,, ...,V
Vector of knot parameters tg,t,, ..., t,, m=n+d+|

ot
» Knot vector represents polynomial segments (non-empty
intervals in domain interval) and also order of continuity
between segments (multiplicity of knot parameters)
» BSA(t) = Nl ViNe, () t €<ty tpyq)
» B-spline basis functions
N () =1,t € < t; tiyq1)
NO(t) =0,t ¢ <t;tiyq)
N¥(£) = —— NK=1,(¢) + 2= yk-1, (1)
Li+k—Li Litvk+1—tit1
i =0,l1,...mk-1 k=I,2,...,d
If some denominator is zero, whole fraction is equal to zero
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B-spline curve

O control point ® knot

multiplicity= 4%, \multiplicity =3

L ]

multiplicity=5
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B-spline curve

If t,=t,=...=t,, curve starts atV,

If t ., =t ,»,=...=t, limit of curve end isV_

Each segment is polynomial of maximal degree d

v Vv VvV v

If some knot parameter tj from domain has multiplicity q,
then spline curve is C%9 at that knot

» Number of polynomial segments is equal to number of
different knot parameters in domain

» If each knot parameter has multiplicity d+1, control points
are also control points of Bezier spline curve

» Local control — change of one control vertex affects only d
segments in close vicinity of changed vertex

» Convex hull — whole curve lies in convex hull of its control
points
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B-spline curve
4

» De Boor evaluation algorithm
Recursive algorithm for curve point evaluation
Fast and numerically stable
Similar to de Casteljau algorithm

» Boehm knot insertion algorithm

Inserts one knot parameter into knot vector, refining knot vector and
control points

Curve remains same, but its representation changes
» Knot removal algorithm

Removes one knot parameter from knot vector

Refines control points

Can change shape of curve

Geometric Modeling in Graphics
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B-spline curve

» Define quadratic uniform B-spline curve, d=2
» Having control polygonV,,V,,...,V,
» Using uniform knot vector 0,1,2,...,n+d+|

» At one step, insert one knot into middle of each non-
empty domain interval in knot vector

» Knot insertion algorithm defines Chaikin subdivision
scheme for control polygon

Geometric Modeling in Graphics



B-spline curve

» Define cubic uniform B-spline curve, d=3
» Having control polygonV,,V,,...,V,
» Using uniform knot vector 0,1,2,...,n+d+|

» At one step, insert one knot into middle of each non-
empty domain interval in knot vector

» Knot insertion algorithm defines Catmull-Clark subdivision
scheme for control polygon

Geometric Modeling in Graphics



Rational curves

» Curve or its segments are made of rational functions
» Expanding class of representable curves

» Representation of conic sections

» Originated from projection of curve

K-\ (U;(_D f li et | p— ii lXi

x(u),y(u))

0.~1) h
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NURBS

» Non-Uniform Rational B-spline
» Defining weights (real numbers) for each control point

» Embedding curve into space with additional dimension —
into projective, homogenous space

Vi=(% ¥ ), W; = PVi=(wix, wiy,, wizi, w))
» Evaluation, algorithms in projective space

» Projection of result point back to affine space
PX=(x,Y,z, w) — X=(x/w, y/w, z/w)

S wlNA(f)

S(H)=-2 te<t, b, >

d P
Z w, Ny (1) ya
i=0 ‘
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Conic sections

» Representing conic sections
» Circle as quadratic NURBS curve

P3 (w=1/2)
(7 20.5[2)},3 4 2 P~ (= 20.5/2)
7
P PP,
L
(u-l:ll/Z) P, =P O Esuz) o=27RE Pp=p F®= %)
knotvector=[0,0,0,1,1,2,2,3,3,3] knotvector=[0,0,0,1,1,2,2,3,3,4,4,4]

» Ellipse, parabola, hyperbola segments as rational Bezier

curve o 1

/ X\‘* .1 (1 —u)?2+ 2(1 — w)uw + u2 ('::l —u)*Po + 2(1 — w)uwP; “‘QPZ)
w=| parabola
w<| ellipse
w>| hyperbola
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Implicit curve

» Algebraic curves
» 2D: Set of all points X € E2 such that f(X)=0

Circle: x2+y2-r?=0
» 3D: Set of all points X € E3 such that f(X)=0, g(X)=0
Circle: x?+y?+z2-r2=0, x+y+z=0
Easy computation if some point is on curve
Defining interior, exterior regions by sign of f
Hard to generate points on curve — hard visualization

v v VvV v

Used for smooth approximation of geometric objects

(Iﬂ_i_yE)E_QCE(IE _yZ) . ([1-4 _Cri) — []

a=|I.1
c=1
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Implicit curve

» Visualization algorithms

» Points generation
For space point Q=(x,,Y,), iteratively find point close enough to curve

Finding solution in the direction of gradient (first derivation)
Newton method for solving f(Q+t.(f,(Q).f,(Q)))=0

f&iyi)
(Xiv1 Yirr) = Qo i) — fx(xi»Yi)Z):]}:y(xi'Yi)z (fe (i yid, fy (X, y1))

Finish iteration when change after one step is small

» Tracing algorithm
Find starting point near curve Q,
Determine point P, from Q, using Newton method
Determine tangent vector T, in P, and compute Q,=P +sT, (s-step)
Repeat until we are back in P,
Polyline P,,P,,...,P  is approximation of implicit curve
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Implicit curve

» Visualization algorithms

» Marching squares
Divide space using uniform grid
For each grid point, compute value of f

For each cell in grid, generate line segments based on values of f
in cell’s corners

Using linear interpolation to compute end points of segments

Render generated line segments

]

OaoBENEDog 4
]

Case 4 Case 5 Case 6 Case 7
\ J

I]KEI_\]I—II/II\II] It

Case 9@ Case 100 Casell Casel2 Casel3 Caseld Casels

s S

Case

Geometric Modeling in Graphics



Implicit curve

» Approximation of blending, intersection
r 1(X)=81(X)-82(X). ..g,(X)-c
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Differential geometry

» Parametric curve —
Tangent vector — T = a];t) "'|
Normal vector — N = aa];gt) k
Curvature — fitting best circle at point P
‘af(t)xazf(t) —
Curvature - k = -2£ 2

i ’
ot

» Implicit curve
Gradient, normal vector - 7f = N = (2£,%) = (£,, £
radient, normal vector - Vi = N = (77, 77 = (. fy
Curve is regular at point if gradient is not zero vector
af o
Tangent vector - T = (— é,é
_fyzfxx+2fxfyfxy_fx2fyy

(fxz +fy2)1’5

Curvature - k =
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The End

for today

ing in Graphics
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