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Curve 

 1D set of points, embedded in space X (E2, E3) 

 f: R → X 

 Parametric curves 

 Set of all points X ϵ X such that X = f(t), t ϵ <a,b> 

 Line: X = S +tD, t ϵ R, S - start point, D - direction vector 

 Circle in 2D: X= (r.cos t, r.sin t), t ϵ <0,2π>, r – radius 

 Implicit curves 

 Set of all points X ϵ E2 such that f(X)=0 

 Line: (X-P).N=0,  P - any point on line, N - normal of line, inner 
product 

 Line in 2D: ax+by+c = 0 

 Circle: |X-C|-r=0, C-center, r-radius 

 Circle in 2D: (x-cx)2+(y-cy)2-r=0 
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Parametric curve 
 Suitable for many modeling algorithms 

 Given parametrization – easy „walk“ on curve, easy to 
generate points on curve 

 Visualization 

 Approximation with piecewise linear curve – polyline 

 Given domain interval <a,b>, choose sample values a=t0 < t1 < 
t2 < …< tm=b 

 Compute sample curve points F0=f(t0), F1=f(t1),…,Fm=f(tm), 
draw polyline F0, F1,…,Fm 

 Parameter m – quality of sampling, approzimation, visualization 

 Uniform sampling: ti = a+i(b-a)/m, i=0,1,…,m 

 Adaptive sampling: compute ti based on curve parameters, for 
example curvature 
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Curve adaptive sampling 
 1. Starting with domain – interval <a,b> 

 2.For current interval <u,v>, choose value w at random, 
w=u+d.(v-u), d is picked at random from <0.45,0.55> 

 Store u,v as sampling values 

 Check if curve for <u,v> is flat enough by computing P=f(u), 
Q=f(v), R=f(w) and using criterion 

 Area of triangle PQR is small 

 Angle PRQ is large enough 

 R is close to chord PQ 

 Tangents of curve at P,Q,R are approximately parallel 

 If curve is not flat enough at <u,v>, divide it into two intervals 
<u,w>,<w,v> and recursivly call 2. for both 

 3. Organize generated sampling values in one sequence 
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Parametric curve sampling 
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Uniform sampling Adaptive sampling 

https://www.researchgate.net/publication/2757679_IV4_Adaptive_Sampling_of_Parametric_Curves 

 

https://www.researchgate.net/publication/2757679_IV4_Adaptive_Sampling_of_Parametric_Curves
https://www.researchgate.net/publication/2757679_IV4_Adaptive_Sampling_of_Parametric_Curves


Polynomial curve 

 Parametric curve where f is polynomial function 

 Popular parametric representation due to fast and easy 

computation 

 In modelling, usually only order up to 3 is used 

 Extended to rational curve – fraction of two polynomials 

 Circle in 2D: f(t)=((1-t2)/(1+t2), 2t/(1+t2)), t ϵ R 
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Polynomial curve 
 Several forms of polynomial basis 

 Monomial basis 

 f(t)=V0+V1t+V2t
2+…+Vnt

n, t ϵ <a,b> 

 V0 - control point, V1,..,Vn - control vectors 

 Not very suitable for geometric modeling 

 Newton, Lagrange interpolation basis 

 Bernstein basis, Bezier curve 

 f(t)=Bn(t)=V0B
n
0(t)+…VnB

n
n(t), t ϵ <0,1> 

 V0,V1,…,Vn – control points 

 Hermite basis, Cubic Hermite curve 

 f(t)=H3(t)=V0H
3
0(t)+T0H

3
1(t)+T1H

3
2(t)+V1H

3
3(t), t ϵ <0,1> 

 V0,V1 - interpolated control points, T0, T1 – tangent vectors 

 H3
0(t)=2t3-3t2+1, H3

1(t)=t3-2t2+t, H3
2(t)=t3-t2, H3

3(t)=-2t3+3t2 
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Bezier curve 

 Approximation curve – mimicking shape of control polyline 

 First and last control points (V0,Vn) are interpolated 

 n.(V1-V0), n.(Vn-Vn-1) are tangent vectors in V0,Vn 

 De Casteljau algorithm 

 Recursively computing point on curve for parameter t 

 V0
i(t)=Vi, I = 0,…,n 

 Vj
i(t)=(1-t)Vj-1

i(t)+tVj-1
i+1(t), i=0,…,n-j, j=1,…n, 

 Bn(t)=Vn
0(t) 

 Vn-1
1(t)-V

n-1
0(t) is tangent vector at Bn(t) 

 Decomposing curve to 2 Bezier curves, subdivision algorithm 

 V0
0(t), V

1
0(t)V

2
0(t),…,Vn

0(t) 

 Vn
0(t),V

n-1
1,V

n-2
2(t)…,V0

n(t) 
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Bezier curve 

Geometric Modeling in Graphics 



Spline curve 
 Simple polynomial curve & many control points = high 

order of polynomials = slow computation 

 Sticking together polynomial curves of small order - 
piecewise polynomial curve, consists of polynomial 
segments, segments meet at knots 

 Representing each segment separately vs whole spline 
curve representation 

 Expecting order of continuity at knots 

 C0 – end point of first segment is equal to start point of second 

 C1 – tangent vector at end point of first segment is equal to 
tangent vector at start point of second segment 

 G1 – tangent vector at end point of first segment is 
multiplication of tangent vector at start point of second 
segment 
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Spline curve 
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Bezier spline curve 
 Each segment is represented as Bezier curve 

 Usually linear, quadratic or cubic segments 

 C0 continuous Bezier spline – polybezier, beziergon 

 C1 continuous Bezier cubic spline 

 Given vertices V0, V1, V2,…, Vn, n=3k 

 V0,V3,V6,…,V3k – interpolated vertices 

 V3k=0.5V3k-1+0.5V3k+1 

 Used in PostScript, PDF, .ttf, OpenType, SVG, …  
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Hermite cubic spline curve 
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 Given vertex points V0, V1, …, Vn, tangent vectors T0,T1, …, 

Tn and knot parameters t0 < t1 < … < tn 

 Interpolation curve, interpolating each given vertex Vi and 

maintaining Ti as tangent vector at Vi  

 Interpolation of tangents - C1 continuity 

 Used mainly for animation curves 

 Each segment is polynomial and represented in Hermite 

cubic curve form 

 For t ϵ <t0,tn>, pick span j such that t ϵ <tj,tj+1> 

 s = (t-tj)/(tj+1-tj) 

 H(t)=Sj(s)= VjH
3
0(s)+TjH

3
1(s)+Tj+1H

3
j(s)+Vj+1H

3
3(s) 



Hermite cubic spline curve 
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 Automatic computation of tangent vectors from given 
points and knot parameters 

 Finite difference 

 𝑇𝑘 = 0.5
𝑉𝑘+1−𝑉𝑘

𝑡𝑘+1−𝑡𝑘
−
𝑉𝑘−𝑉𝑘−1

𝑡𝑘−𝑡𝑘−1
 

 Cardinal spline 

 𝑇𝑘 = (1 − 𝑐)
𝑉𝑘+1−𝑉𝑘−1

𝑡𝑘+1−𝑡𝑘−1
 

 c - tension 

 Catmull-Rom spline 

 𝑇𝑘 =
𝑉𝑘+1−𝑉𝑘−1

𝑡𝑘+1−𝑡𝑘−1
 

 Kochanek-Bartels spline 

 𝑇𝑘 =
1−𝑡 1+𝑏 1+𝑐

2
𝑇𝑘 − 𝑇𝑘−1 +

1−𝑡 1−𝑏 1−𝑐

2
(𝑇𝑘+1 − 𝑇𝑘) 

 c – continuity, b – bias, t – tension 



Hermite cubic spline curve 
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 Computation of knot parameters 

 Uniform: tk = k 

 Length: t0 = 0, tk = tk-1+|Vk-Vk-1| 

 

Finite difference spline 

Kochanek-Bartels spline 

Cardinal spline 



B-spline curve 
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 Compact representation of approximating spline curves 

 Input 
 Polynomials degree d 

 Control points V0, V1, …, Vn 

 Vector of knot parameters t0,t1, …, tm, m=n+d+1 

 Knot vector represents polynomial segments (non-empty 
intervals in domain interval) and also order of continuity 
between segments (multiplicity of knot parameters) 

 𝐵𝑆𝑑 𝑡 =  𝑉𝑖𝑁
𝑑
𝑖 𝑡         𝑡 ∈< 𝑡𝑑 , 𝑡𝑛+1)

𝑛
𝑖=0  

 B-spline basis functions 
 𝑁0𝑖 𝑡 = 1, 𝑡 ∈ < 𝑡𝑖 , 𝑡𝑖+1) 
 𝑁0𝑖 𝑡 = 0, 𝑡 ∈ < 𝑡𝑖 , 𝑡𝑖+1) 

 𝑁𝑘𝑖 𝑡 =
𝑡−𝑡𝑖

𝑡𝑖+𝑘−𝑡𝑖
𝑁𝑘−1𝑖 𝑡 +

𝑡𝑖+𝑘+1−𝑡

𝑡𝑖+𝑘+!−𝑡𝑖+1
𝑁𝑘−1𝑖+1 𝑡      

 𝑖 =0,1,…,m-k-1     k=1,2,…,d 

 If some denominator is zero, whole fraction is equal to zero 

 

 



B-spline curve 
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B-spline curve 

Geometric Modeling in Graphics 

 If t0=t1=…=td, curve starts at V0 

 If tn+1=tn+2=…=tm, limit of curve end is Vn 

 Each segment is polynomial of maximal degree d 

 If some knot parameter tj from domain has multiplicity q, 
then spline curve is Cd-q at that knot 

 Number of polynomial segments is equal to number of 
different knot parameters in domain 

 If each knot parameter has multiplicity d+1, control points 
are also control points of Bezier spline curve 

 Local control – change of one control vertex affects only d 
segments in close vicinity of changed vertex 

 Convex hull – whole curve lies in convex hull of its control 
points 

 



B-spline curve 
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 http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-
Cho/node18.html 

 De Boor evaluation algorithm 

 Recursive algorithm for curve point evaluation 

 Fast and numerically stable 

 Similar to de Casteljau algorithm 

 Boehm knot insertion algorithm 

 Inserts one knot parameter into knot vector, refining knot vector and 
control points 

 Curve remains same, but its representation changes 

 Knot removal algorithm 

 Removes one knot parameter from knot vector 

 Refines control points 

 Can change shape of curve 

 

http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node18.html


B-spline curve 
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 Define quadratic uniform B-spline curve, d=2 

 Having control polygon V0,V1,…,Vn 

 Using uniform knot vector 0,1,2,…,n+d+1 

 At one step, insert one knot into middle of each non-
empty domain interval in knot vector 

 Knot insertion algorithm defines Chaikin subdivision 
scheme for control polygon 



B-spline curve 
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 Define cubic uniform B-spline curve, d=3 

 Having control polygon V0,V1,…,Vn 

 Using uniform knot vector 0,1,2,…,n+d+1 

 At one step, insert one knot into middle of each non-
empty domain interval in knot vector 

 Knot insertion algorithm defines Catmull-Clark subdivision 
scheme for control polygon 



Rational curves 
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 Curve or its segments are made of rational functions 

 Expanding class of representable curves 

 Representation of conic sections 

 Originated from projection of curve 



NURBS 
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 Non-Uniform Rational B-spline 

 Defining weights (real numbers) for each control point 

 Embedding curve into space with additional dimension – 
into projective, homogenous space 

 Vi=(xi, yi, zi), wi → PVi=(wixi, wiyi, wizi, wi) 

 Evaluation, algorithms in projective space 

 Projection of result point back to affine space 

 PX=(x, y, z, w) → X=(x/w, y/w, z/w) 



Conic sections 
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 Representing conic sections 

 Circle as quadratic NURBS curve 

 

 

 

 

 

 Ellipse, parabola, hyperbola segments as rational Bezier 
curve 

knotvector=[0,0,0,1,1,2,2,3,3,3] knotvector=[0,0,0,1,1,2,2,3,3,4,4,4] 

w=1 parabola 

w<1 ellipse 

w>1 hyperbola 



Implicit curve 

Geometric Modeling in Graphics 

 Algebraic curves 

 2D: Set of all points X ϵ E2 such that f(X)=0 

 Circle: x2+y2-r2=0 

 3D: Set of all points X ϵ E3 such that f(X)=0, g(X)=0 

 Circle: x2+y2+z2-r2=0, x+y+z=0 

 Easy computation if some point is on curve 

 Defining interior, exterior regions by sign of f 

 Hard to generate points on curve – hard visualization 

 Used for smooth approximation of geometric objects 

a=1.1 

c=1 



Implicit curve 

Geometric Modeling in Graphics 

 Visualization algorithms 

 Points generation 

 For space point Q=(x0,y0), iteratively find point close enough to curve 

 Finding solution in the direction of gradient (first derivation) 

 Newton method for solving f(Q+t.(fx(Q),fy(Q)))=0 

 𝑥𝑖+1, 𝑦𝑖+1 = 𝑥𝑖 , 𝑦𝑖 −
𝑓 𝑥𝑖,𝑦𝑖

𝑓𝑥 𝑥𝑖,𝑦𝑖
2+𝑓𝑦 𝑥𝑖,𝑦𝑖

2 (𝑓𝑥 𝑥𝑖 , 𝑦𝑖 , 𝑓𝑦 𝑥𝑖 , 𝑦𝑖 ) 

 Finish iteration when change after one step is small 

 Tracing algorithm 

 Find starting point near curve Q1 

 Determine point P1 from Q1 using Newton method 

 Determine tangent vector T1 in P1 and compute Q2=P1+sT1 (s-step) 

 Repeat until we are back in P1 

 Polyline P1,P2,…,Pn is approximation of implicit curve 

 

 



Implicit curve 
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 Visualization algorithms 

 Marching squares 

 Divide space using uniform grid 

 For each grid point, compute value of f 

 For each cell in grid, generate line segments based on values of f 
in cell’s corners 

 Using linear interpolation to compute end points of segments 

 Render generated line segments 

 



Implicit curve 
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 Approximation of blending, intersection 

 f(X)=g1(X).g2(X)…gn(X)-c 

 



Differential geometry 
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 Parametric curve 

 Tangent vector – T =
𝜕𝑓 𝑡

𝜕𝑡
 

 Normal vector – N =
𝜕2𝑓 𝑡

𝜕𝑡2
 

 Curvature – fitting best circle at point 

 Curvature - 𝑘 =

𝜕𝑓 𝑡

𝜕𝑡
×
𝜕2𝑓 𝑡

𝜕𝑡2

𝜕𝑓 𝑡

𝜕𝑡

3  

 Implicit curve 

 Gradient, normal vector - 𝛻f = N =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
= (𝑓𝑥, 𝑓𝑦) 

 Curve is regular at point if gradient is not zero vector 

 Tangent vector - T = (−
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑥
) 

 Curvature - 𝑘 =
−𝑓𝑦

2𝑓𝑥𝑥+2𝑓𝑥𝑓𝑦𝑓𝑥𝑦−𝑓𝑥
2𝑓𝑦𝑦

(𝑓𝑥
2+𝑓𝑦

2)1,5
 



The End 
for today 
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