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Part 7: Surfaces 



Surface 

 2D set of points, embedded in space E3 

 f: R2 → E3 

 Parametric surfaces 

 Set of all points X ϵ E3 such that X = f(u,v),                              

u ϵ <u0,u1>, v ϵ <v0,v1> 

 Plane: f(u,v)= S + uD1 + vD2 

 Sphere: f(u,v)=(r.cos(u).cos(v), r.cos(u).sin(v), r.sin(v)),                

u ϵ <0,2π>, v ϵ <0, π> 

 Implicit surfaces 

 Set of all points X ϵ E3 such that f(X)=0 

 Plane: ax+by+cz+d = 0 

 Sphere: (x-sx)
2 +(y-sy)

2 + (z-sz)
2 –r2 = 0 
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Parametric surface 
 Two parameters in surface function 

 Similar properties, algorithms like in curve case – putting 

one parameter constant leads to isocurve 

 Visualization 

 Sampling domain using 2D grid points 

 Computing surface points using sampled points and f 

 Connecting surface points based on domain grid connections  

and forming triangle or quad mesh 

 Uniform sampling 

 Adaptive sampling 

 Raytracing 
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Polynomial surface 

 f is polynomial function in both parameters 

 Monomial basis 

 𝑓 𝑢, 𝑣 =   𝑉𝑖𝑗𝑢
𝑖𝑣𝑗𝑚

𝑗=0
𝑛
𝑖=0  

 Bezier surface 

 𝑓 𝑢, 𝑣 =   𝑉𝑖𝑗𝐵
𝑛
𝑖(𝑢)𝐵

𝑚
𝑗(𝑣)

𝑚
𝑗=0

𝑛
𝑖=0  

 Square domain: 𝑢 ∈< 0,1 >, 𝑣 ∈< 0,1 > 

 Bernstein basis: 𝐵𝑛
𝑖 𝑢 =

𝑛
𝑖

(1 − 𝑢)𝑖𝑢𝑛−𝑖 

 Tensor product surface 

 Approximation surface 

 Interpolating 𝑉00, 𝑉𝑛0, 𝑉0𝑚, 𝑉𝑛𝑚 

 Boundary curves are Bezier curves 

 Algorithms adopted from curve case 

 Geometric Modeling in Graphics 



Polynomial surface 

 Bezier triangle 

 𝑓 𝑢, 𝑣 =  𝑉𝑖𝑗𝑘𝐵
𝑛
𝑖𝑗𝑘(𝑢, 𝑣, 1 − 𝑢 − 𝑣)𝑛

𝑖=0,𝑗=0,𝑘=0
𝑖+𝑗+𝑘=𝑛

 

 Triangle domain:  𝑢 ∈< 0,1 >, 𝑣 ∈< 0,1 >, 𝑢 + 𝑣 ≤ 1 

 Generalized Bernstein basis:  𝐵𝑛
𝑖𝑗𝑘 𝑢, 𝑣, 𝑤 =

𝑛!

𝑖!𝑗!𝑘!
𝑢𝑖𝑣𝑗𝑤𝑘 

 𝑢, 𝑣, 𝑤 – barycentric coordinates in domain 

 Approximation surface of order 𝑛 

 Interpolating 𝑉𝑛00, 𝑉0𝑛0, 𝑉00𝑛 

 Special adaptation of curve algorithms 
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Polynomial surface 

 Hermite bicubic surface 

 𝑓 𝑢, 𝑣 = 𝑈𝐻𝑃𝐻𝑇𝑉𝑇 

 𝑈 = 𝑢3 𝑢2 𝑢 1 , V = 𝑣3 𝑣2 𝑣 1  

 𝐻 =

2 −2 1 1
−3 3 −2 1
0 0 1 0
1 0 0 0

 

 𝑃 =

𝑃00 𝑃01 𝑃00
𝑣 𝑃01

𝑣

𝑃10 𝑃11 𝑃10
𝑣 𝑃11

𝑣

𝑃00
𝑢 𝑃01

𝑢 𝑃00
𝑢𝑣 𝑃01

𝑢𝑣

𝑃10
𝑢 𝑃11

𝑢 𝑃10
𝑢𝑣 𝑃11

𝑢𝑣

 

 𝑃00, 𝑃10, 𝑃01, 𝑃11- interpolated corner points 

 𝑃𝑖𝑗
𝑢, 𝑃𝑖𝑗

𝑣- tangent vectors in corner points 

 𝑃𝑖𝑗
𝑢𝑣- second order derivatives, twists, in corner points 

 Square domain: 𝑢 ∈< 0,1 >, 𝑣 ∈< 0,1 > 
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Polynomial surface 

 Coons surface (patch) 

 Given four boundary parametric curves 

p 𝑢, 0 , 𝑝 𝑢, 1 , 𝑝 0, 𝑣 , 𝑝(1, 𝑣) meeting at four corners  

 𝑓 𝑢, 𝑣 = 𝑝 𝑢, 0 1 − 𝑣 + 𝑝 𝑢, 1 𝑤 + 𝑝 0, 𝑣 1 − 𝑢 +
𝑝 1, 𝑣 𝑢 − 𝑝 0,0 1 − 𝑢 1 − 𝑣 − 𝑝 0,1 1 − 𝑢 𝑣 −
𝑝 1,0 𝑢 1 − 𝑣 − 𝑝 1,1 𝑢𝑣 

 Square domain: 𝑢 ∈< 0,1 >, 𝑣 ∈< 0,1 > 
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Spline surface 

 Piecewise polynomial in both parametric directions  

 Segments are polynomial surfaces with small order 

 Expecting order of continuity in both directions 
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Bezier spline surface 
 Each segment is represented as Bezier surface 

 Usually linear, quadratic or cubic segments 

 Continuity guaranteed by constraints on control points 

near boundary 
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Hermite bicubic spline surface 
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 Given 2D grid of vertex points 𝑉𝑖𝑗; 𝑖 = 0,1,… , 𝑛; 𝑗 = 0,1,… ,𝑚, 
grid of tangent vectors for vertex points in both directions 
𝑉𝑖𝑗

𝑢, 𝑉𝑖𝑗
𝑣; 𝑖 = 0,1,… , 𝑛; 𝑗 = 0,1,… ,𝑚, grid of twist vectors for 

each vertex point 𝑉𝑖𝑗
𝑢𝑣; 𝑖 = 0,1,… , 𝑛; 𝑗 = 0,1,… ,𝑚 two 

vectors of knot parameters 𝑢0 < 𝑢1 < ⋯ < 𝑢𝑛, 𝑣0 < 𝑣1 < ⋯ <
𝑣𝑚 

 Interpolation surface, interpolating each given vertex 𝑉𝑖𝑗 and 
maintaining tangent vectors and twists at 𝑉𝑖𝑗  

 Interpolation of tangents and twists - C1 continuity 

 Each segment is represented in Hermite cubic surface form 
 For 𝑢 ∈< 𝑢0, 𝑢𝑛 >, 𝑣 ∈< 𝑣0, 𝑣𝑚 >, pick span 𝑘𝑙 such that 𝑢 ∈<

𝑢𝑘 , 𝑢𝑘+1 >, 𝑣 ∈< 𝑣𝑙 , 𝑣𝑙+1 > 

 𝑢 =
𝑢−𝑢𝑘

𝑢𝑘+1−𝑢𝑘
, 𝑣 =

𝑣−𝑣𝑙

𝑣𝑙+1−𝑣𝑙
 

 Compute point on Hermite bicubic spline surface using Hermite 
bicubic surface for corners 𝑉𝑘𝑙 , 𝑉𝑘+1𝑙 , 𝑉𝑘𝑙+1, 𝑉𝑘+1𝑙+1 and parameters 
𝑢 , 𝑣  



Hermite cubic spline surface 
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 Automatic computation of tangent vectors, knots from 

given points and knot parameters 

 Automatic computation of knot vectors 

 Using approaches from curve Hermite cubic spline case for 

each parameter separately 

 Twists – zero vectors – Ferguson surface 



Curved PN triangles 
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 https://www.cise.ufl.edu/research/SurfLab/papers/00ati.pdf 

 Given triangular mesh with vertex normals 

 Creating surface interpolating vertices of mesh and having 
given normals in that vertices 

 Piecewise polynomial mesh, creating one Bezier triangle for 
each triangle of mesh 

 Interpolating geometry – cubic Bezier triangle 

 Interpolating normals – quadratic Bezier triangle 

 Implemented in hardware 

https://www.cise.ufl.edu/research/SurfLab/papers/00ati.pdf
https://www.cise.ufl.edu/research/SurfLab/papers/00ati.pdf


Curved PN triangles 
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 𝑏300 = 𝑃1, 𝑏030 = 𝑃2, 𝑏003 = 𝑃3 

 𝑤𝑖𝑗 = 𝑃𝑗 − 𝑃𝑖 . 𝑁𝑖 

 𝑏210 =
2

3
𝑃1 +

1

3
𝑃2 −

𝑤12

3
𝑁1 

 𝑏120 =
2

3
𝑃2 +

1

3
𝑃1 −

𝑤21

3
𝑁2 

 𝑏021 =
2

3
𝑃2 +

1

3
𝑃3 −

𝑤23

3
𝑁2 

 𝑏012 =
2

3
𝑃3 +

1

3
𝑃2 −

𝑤32

3
𝑁3 

 𝑏102 =
2

3
𝑃3 +

1

3
𝑃1 −

𝑤31

3
𝑁3 

 𝑏201 =
2

3
𝑃1 +

1

3
𝑃3 −

𝑤13

3
𝑁1 

 𝑉 =
1

3
𝑃1 +

1

3
𝑃2 +

1

3
𝑃3 

 𝐸 =
1

6
𝑏210 +

1

6
𝑏120 +

1

6
𝑏021 +

1

6
𝑏012 +

1

6
𝑏102 +

1

6
𝑏201 

 𝑏111 =
3

2
𝐸 −

1

2
V 

 



B-spline surface 
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 Compact representation of approximating spline surfaces 

 Tensor product surface 

 Input 

 Polynomial degrees 𝑑𝑢, 𝑑𝑣 

 2D grid of control points𝑉𝑖𝑗; 𝑖 = 0, … , 𝑛𝑢; 𝑗 = 0, … , 𝑛𝑣  

 2 vectors of knot parameters 𝑢0, 𝑢1, … , 𝑢𝑚𝑢
, 𝑣0, 𝑣1, … , 𝑣𝑚𝑣

  

 𝑚𝑢 = 𝑛𝑢 + 𝑑𝑢 + 1,𝑚𝑣 = 𝑛𝑣 + 𝑑𝑣 + 1 

 𝐵𝑆𝑆𝑑𝑢𝑑𝑣 𝑢, 𝑣 =   𝑉𝑖𝑗𝑁
𝑑𝑢

𝑖 𝑢 𝑁𝑑𝑣
𝑗 𝑣

𝑛𝑣
𝑗=0

𝑛𝑢
𝑖=0  

 Rectangle domain: 𝑢 ∈< 𝑢𝑑𝑢
, 𝑢𝑛𝑢+1), 𝑣 ∈< 𝑣𝑑𝑣

, 𝑣𝑛𝑣+1) 

 Using B-spline basis function same as in curve case 

 Similar properties and algorithms as in curve case, treating 
each parameter separately 

 

 



B-spline surface 
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Surface subdivision algorithms 
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 Producing extended set of control points without change 
in shape of original surface 

 Knot insertion, Boehm algorithm, degree elevation 

 Doo-Sabin subdivision 

 Corner and edge cutting algorithm 

 Uniform knot insertion into biquadratic B-spline surface 

 Originally for regular 2D grid of control points extended for 
arbitrary meshes, producing polygons of arbitrary size 

 Catmull-Clark subdivision 

 Uniform knot insertion into bicubic B-spline surface 

 Originally for regular 2D grid of control points extended for 
arbitrary meshes, producing only quads 

 



Surface subdivision algorithms 
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NURBS surface 
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 Non-Uniform Rational B-spline surface 

 Defining weights (real numbers) 𝑤𝑖𝑗 for each control point 

 Embedding B-spline surface into space with additional 
dimension – into projective, homogenous space 

 𝑉𝑖𝑗 = 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 → 𝑃𝑉𝑖𝑗 = (𝑤𝑖𝑗𝑥𝑖𝑗 , 𝑤𝑖𝑗𝑦𝑖𝑗 , 𝑤𝑖𝑗𝑧𝑖𝑗 , 𝑤𝑖𝑗) 

 Evaluation, algorithms in projective space 

 Projection of result point back to affine space 

 𝑃𝑋 = 𝑥, 𝑦, 𝑧, 𝑤 → 𝑋 = (
𝑥

𝑤
,
𝑦

𝑤
,
𝑧

𝑤
) 

 𝑅𝐵𝑆𝑆𝑑𝑢𝑑𝑣 𝑢, 𝑣 =
  𝑤𝑖𝑗𝑉𝑖𝑗𝑁

𝑑𝑢
𝑖 𝑢 𝑁𝑑𝑣

𝑗 𝑣
𝑛𝑣
𝑗=0

𝑛𝑢
𝑖=0

  𝑤𝑖𝑗𝑁
𝑑𝑢

𝑖 𝑢 𝑁𝑑𝑣
𝑗 𝑣

𝑛𝑣
𝑗=0

𝑛𝑢
𝑖=0

 

 
 



NURBS ruled surface 
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 For each point there is line (segment) passing through that 
point and lying on surface 

 Connecting two NURBS curves using line segments 

 Compacting both curves to have same degree and same 
knot vector – linear transformation of parameter, knot 
insertion, degree elevation 

 Putting control points of curves into 2D 

 𝑑𝑣 = 1 

 Knot vector for 𝑣 direction - (0,0,1,1) 



NURBS surface of revolution 
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 Rotating NURBS curve around line (coordinate axis) 

 𝑢-direction – given NURBS curve 

 𝑣-direction – parameters of circular arc as NURBS curve 

 Control points – rotated control points of given NURBS 
curve around given line forming control points for circular 
arc as NURBS curve 



Implicit surface 
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 Set of all points 𝑋 ∈ 𝑬𝟑 such that 𝑓(𝑋) = 0 

 Sphere: x2+y2+z2-r2=0 

 Easy computation if some point is on surface 

 Defining interior, exterior, border regions by sign of 𝑓 

 Hard to generate points on surface 

 "Metaballs", "Blobbies", "Soft objects“ 

 Smooth 



Implicit surface 
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 Generation from primitives (points, lines, …)-𝑃1, 𝑃2, … , 𝑃𝑛 
 Simulating energy field around primitives 
 𝐷𝑖 𝑋  - Distance of point 𝑋 and primitive 𝑃𝑖  

 𝑓 𝑋 =  𝐵(𝐷𝑖 𝑋 )𝑛
𝑖=0 − F 

 F – isovalue, field strength 
 Blobby molecules 

 𝐵 𝑟 = 𝑎𝑒−𝑏𝑟2
, 𝐵 𝑟 =

𝑎

𝑟2 

 Metaballs 

 𝐵 𝑟 = 𝑎(1 −
3𝑟2

𝑏2 ) for 0 ≤ 𝑟 ≤
𝑏

3
 

 𝐵 𝑟 =
3𝑎

2
(1 −

𝑟

𝑏
)2 for 

𝑏

3
≤ 𝑟 ≤ 𝑏 

 𝐵 𝑟 = 0 for 𝑏 ≤ 𝑟 

 Soft Objects 

 𝐵 𝑟 = 𝑎(1 −
4𝑟6

9𝑏6 +
17𝑟4

9𝑏4 −
22𝑟2

9𝑏2 ) for 0 ≤ 𝑟 ≤ 𝑏 

 𝐵 𝑟 = 0 for 𝑏 ≤ 𝑟 

 
 
 
 
 

Two point primitives, varying isovalue F 



Implicit surface 
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 Boolean operations on two objects represented as implicit 
surfaces with functions 𝑓𝐴, 𝑓𝐵 

 Union 

 𝑓𝐴∪𝐵 𝑋 = min (𝑓𝐴(𝑋), 𝑓𝐵(𝑋)) 

 𝑓𝐴∪𝐵 𝑋 = −𝑒−𝑏𝑓𝐴 𝑋 − 𝑒−𝑏𝑓𝐴 𝑋 + 1 

 Intersection 

 𝑓𝐴∩𝐵 𝑋 = max (𝑓𝐴(𝑋), 𝑓𝐵(𝑋)) 

 𝑓𝐴∩𝐵 𝑋 = −𝑒−𝑏𝑓𝐴 𝑋 + 𝑒−𝑏𝑓𝐴 𝑋 + 1 

 Difference 

 𝑓𝐴−𝐵 𝑋 = max (𝑓𝐴(𝑋),−𝑓𝐵(𝑋)) 

 𝑓𝐴−𝐵 𝑋 = 𝑒𝑏𝑓𝐴 𝑋 + 𝑒𝑏𝑓𝐴 𝑋 + 1 

 

 

 



Implicit surface 
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 Smooth approximation of several implicit surfaces 

 𝑓 𝑋 = 𝑓1 𝑋 . 𝑓2 𝑋 …𝑓𝑛 𝑋 − 𝐶 

 Morphing, metamorphosis of two surfaces 

 𝑓 𝑋 = (1 − 𝜇)𝑓1 𝑋 + 𝜇𝑓2 𝑋 , 𝜇 ∈< 0,1 > 

 

 



Implicit surface 
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 Visualization algorithms 
 http://dl.acm.org/citation.cfm?id=2732197 
 Points generation 

 Distributing particles over implicit surface 

 Spatial decomposition 
 Sampling implicit function in finite uniform grid points 
 Generating surface triangles for each cell separately 
 Marching cubes, marching tetrahedra 

 Surface tracing 
 Creating triangles by tracing surface from starting point 
 Marching triangles 

 Ray-tracing 
 Simulating rays from eye through screen into scene 
 Each ray given in parametric form 𝑋 = 𝑆 + 𝑡𝐷, 𝑡 ∈ 𝑹 
 Finding intersection of ray and surface 
 Solving 𝑓 𝑆 + 𝑡𝐷 = 0 directly or using numerical methods 

(Newton..) 

 

http://dl.acm.org/citation.cfm?id=2732197
http://dl.acm.org/citation.cfm?id=2732197


Implicit surface 
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Differential geometry 
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 Parametric surface 

 Tangent vectors – 𝑇𝑢 =
𝜕𝑓 𝑢,𝑣

𝜕𝑢
, 𝑇𝑣 =

𝜕𝑓 𝑢,𝑣

𝜕𝑣
 

 Normal vector – N = 𝑇𝑢𝑥𝑇𝑣 

 Curvature is based on curve case 

 For each direction from tangent plane → perpendicular plane to 
surface → intersection curve → curvature 

 Principal curvatures = min, max curvatures 𝑘1, 𝑘2 

 Mean curvature - 𝐻 =
𝑘1+𝑘2

2
, Gaussian curvature - 𝐾 = 𝑘1. 𝑘2 

 Implicit surface 

 Gradient, normal vector - 𝛻f = N =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
= (𝑓𝑥, 𝑓𝑦, 𝑓𝑧) 

 Surface is regular at point if gradient is not zero vector 

 Curvatures determined from parametric case 



The End 
for today 
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