Real-time Graphics

5. Shadows

Martin SamuelcCik

® Realism, atmosphere
® Spatial relationships, object orientation, surface
® | ight position, light properties

e

Real-time Graphics
Martin Samuelcik

® Part of global illumination

® For each point, determine if there is some
occluder between point and light

light source

creator
(occluder, blocker, cas creator and

receiver

receiver
(occludee)

Real-time Graphics

Martin Samuelcik

Hard vs. Soft shadows

® For each point, determine how much of
the light is visible from that point

point source

hard shadow

Real-time Graphics
Martin Samuelcik

alrea source

penumbra

umbra

penumbra

Shadows generation

® Offline generation + lights maps for static objects
and lights

® Approximate shadows using simple polygons

® Cast shadows on planar polygons by
transformation of objects into plane

® Compute intersection of shadow volumes with
scene

® Determine occlusion from light's distance given
by shadow map

Real-time Graphics
Martin Samuelcik

Light maps

> Real-time Graphics
. Martin SamuelCik

Approximate shadows

® Replacing shadow with simple shape
® Cast ray from light through feature object
® Blend simple sha

," Y’ 8

i‘li Real-time Graphics
> Martin SamuelCik

Planar shadows

® For planar receivers

® Render occluder as deformed object transformed
into receiver plane

® Blend receiver with transformed object

® Planar soft shadows - sample light source

® Several objects in one plane -> Z-fighting ->
solve with g/PolygonOffset

® Parts of transformed occluder outside receiver &
double blending -> solve with stencil buffer

Real-time Graphics
Martin Samuelcik

Planar shadows

extends off
ground region

Z fighting double blending

> Real-time Graphics
| Martin SamuelcCik

Projective shadows

® Separate objects into occluders and receivers

® Render black occluders from light position into
texture with white background

® Project rendered map onto receivers
® No self shadowing, artifacts

Shadow Texture Result

Real-time Graphics
Martin Samuelcik

Shadow mapping

® Using map storing distances from light
® Image space — 2 pass algorithm
® HW supported, major shadow algorithm

Real-time Graphics
Martin Samuelcik

11

Shadow mapping

® 1.pass - Render scene from light position
— Render only depth buffer to texture
— Depth buffer — shadow map
— Shadow map holds distance D of objects to light

® 2. pass - Render scene normally
— For each fragment, calculate distance S to the light

— Transform fragments to light space — compute texture
coordinates for shadow map lookup

— Get distance D from shadow map (light space)
— If S>D — fragment is in shadow

Real-time Graphics

) vr 12
Martin SamuelcCik

Shadow mapping

Eye view

Real-time Graphics

Martin Samuelcik 13

Light space

®].pass - Rendering scene from light's point of view

® Setting modelview (MV,) and projection (P,)
transformation when rendering from light, so that light
frustrum fit scene tightly

® Shadow map texture coordinates are computed for each
vertex by reconstructing light transformation pipeline

® Third coordinate of shadow map coordinates is normalized
sitance of vertex from camera
shadow_clip] = P..MV,.[X,,Yo,Zo]"

'shadow_norm] = shadow_clip / shadow_clip.w
05 0 0 05

'shadow_coords] = N. [shadow_norm] 0 05 0 05
o 0 0 05 05
Real-time Graphics N S 141

Martin Samuelcik

Light space

® MV, consits of V, (light view matrix) and M,
(model matrix)

® 2.pass — rendering from camera, with P. (camera
projection matrix), MV (camera modelview
matrix) consists of V- and M

®* M, = M.
® \We want to reconstruct shadow texture

coordinates, need P, and MV, but MV, can be
different for each object

® Solution 1: s_clip = P..V_.VL.MV.[X,,Y0, 21T
® Solution 2: s_clip = P..V|.M¢.[X.,Yo,Z I T

Real-time Graphics

) vr 1
Martin SamuelcCik 3

Rendering depth to texture

® Using FBO 2= 5 (- *;i: | 0.5H - 0.5)
® Internal format for texture [*n
—GL_DEPTH_COMPONENT &~ 577
— GL_DEPTH_COMPONENT24 L
—GL_DEPTH_COMPONENT32 ™ Z(;=w 057+ 05/ -
® For perspective projection - @(fff:)_f

® Depth precision
—s = 24 -1, d is bit precision of buffer, <0,s> is then
range of values in depth buffer
—Z., W, - coordinates of vertex in eye space

—z,, integer depth value of vertex in depth buffer

Real-time Graphics

Martin Samuelcik 16

Depth precision

® https://www.opengl.org/wiki/Depth Buffer Precision

® Example 1:
— 16 bit depth buffer, d = 16, s = 65535, n = 0.01, f = 1000, w, = 1
—z,=0->2z,=-0.01 =-n
—z,=1->2z, =-0.01000015
— 2z, =51=65534-> z,=-395.9
— 2z, =S =65535->2z =-1000 = -f
— All vertices with distance from camera between 0.01 and

0.01000015 are mapped into two values 0, 1 in depth buffer —
very good precision

— All vertices with distance from camera between 395.9 and 1000
are mapped only into two values 65534, 65535 in depth buffer —
very poor precision

Real-time Graphics

Martin Samuelcik 17

https://www.opengl.org/wiki/Depth_Buffer_Precision

Depth precision

® Example 2:
— 16 bit depth buffer, d = 16, s = 65535, n = 0.1, f = 100, w, = 1
—2,=0->2z,=-0.1=-n
— z,=1->2z =-0.01000015
— 2z, = S-1 =65534 -> z, = -98.499
— 2, =5=065535->2z =-100 = f
— Vertices with distance from camera between 0.01 and 0.01000015 are mapped
into two values 0, 1 in depth buffer — very good precision

— Vertices with distance from camera between 98.499 and 100 are mapped into
two values 65534, 65535 in depth buffer — relatively good precision

® As the ratio (f/n) increases, less precision is available near
the back of the depth buffer and more precision is
available close to the front of the depth buffer

® For same precision in whole range, use linear depth —
normalized z_ values

Real-time Graphics

Martin Samuelcik 18

SM resolution problem

® Map resolution — jagged edges of shadows

® Solution — use higher resolution, blur shadow map
(percentage close filtering), use more maps, ...

Screen Space Blur 3x3 Percentage Closer Filtering Normal Shadow Mapping

Real-time Graphics
| Martin SamuelcCik

Percentage close filtering

® (Classical filter — filtering of depth values
® PCF — filtering depth comparison values
® HW supported /‘“

Real-time Graphics
Martin Samuelcik

20

SM problems

® Perspective aliasing — same shadow map
resolution for near and far objects

® Solution — redistribute values in shadow map

L VR R R

Real-time Graphics _H/ 21

Martin Samuelcik

SM problems

® Incorrect self-shadowing — caused by similar values of S
(normalized z eye coordinate of fragment) and D (depth
from shadow map) on lit surface and SM precision

® Solution — add bias to shadow map valiies &

.~ Polygon

Shifted Polygon
//

22

Real-time Graphics
Martin Samuelcik

SM problems

® Projective aliasing — for planes almost parallel to
light direction

® Solution — similar to perspective aliasing

vAg
1@{,

i

Real-time Graphics

Martin Samuelcik 23

OpenGL SM support

® Not using shaders
— Computation of light space in texture transformation
— GL_ARB_shadow — testing, depth comparision

® Shaders
— Test in fragment shader
— Uniforms for accessing depth textures

— sampler2D — fetch from texture gets depth values, , possibly
filtered

— sampler2Dshadow — fetch from texture returns result of
comparison, possibly filtered
— Comparision function for shadow sampler setting

® glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,
GL_COMPARE_REF_TO_TEXTURE)

e glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC,
GL_LEQUAL)

— Support for float samplers and sampler objects in newer OpenGL

Real-time Graphics

Martin Samuelcik 24

Shadow mapping - GLSL

// SHADOW MAPPING VERTEX SHADER - 2.pass
varying vec4 L_eye;

varying vec4 N_eye;

varying vec4 diffTexCoords;

varying vec4 depthTexCoords;

uniform mat4 lightProj;
uniform mat4 lightView;
uniform mat4 cameraViewInverse;

void main(void)

{
// compute vectors for light calculation
vec4 V_eye = gl_ModelViewMatrix * gl_Vertex;
L_eye = normalize(gl_LightSource[0].position - V_eye);
N_eye = vec4(gl_NormalMatrix * gl_Normal, 0.0);
gl_Position = gl_ProjectionMatrix * V_eye;

diffTexCoords = gl_MultiTexCoord0;

// compute normalized light space coordinates

depthTexCoords = lightProj * lightView * cameraViewlnverse * V_eye;

depthTexCoords = 0.5 * (depthTexCoords / depthTexCoords.w) + 0.5;
V_eye = -V_eye;

Real-time Graphics
Martin Samuelcik

// SHADOW MAPPING FRAGMENT SHADER - 2.pass
varying vec3 L_eye;

varying vec3 N_eye;

varying vec4 diffTexCoords;

varying vec4 depthTexCoords;

uniform sampler2D diffuseTexture;

uniform sampler2DShadow depthLightTexture;

void main(void)

{
vec3 L = normalize(vec3(L_eye));
vec3 N = normalize(vec3(N_eye));

difColor = texture(diffuseTexture, vec2(diffTexCoords));
float diffuse = max(dot(L, N), 0);

// add some epsilon to depth to prevent bias
depthTexCoords.z += 0.0001;

// get result of comaprision between depth from shadow map and third
coordinate of depthTexCoords

float depth_test = texture(depthLightTexture, vec3(depthTexCoords));
diffuse = depth_test * diffuse;

gl_FragColor = 0.5f * gl_LightSource[0].ambient * diffColor +
diffuse * gl_LightSource[0].diffuse * diffColor;

; 25

Soft shadows

® PCF generates blurred, soft shadows
® Can be blurred also in image space
® PCF kernel size adaptlve to distance

u % T X 5}\9
b K R
v M N
- e N
o R, & i B,
) CL 8 e ~lv,
A NN e
: 2 T A A
. S Iy i -
% L . ORI Ty AR e v
5] PR P N e B Sl
) - = T kY e U3 o N3 b
-2 2 % > (k3
ves e - o
T T S Ay
7
B
e ~
L R e e
= — o ¥
Fe ST
*
S £
- =g >
» -
- <A "y
- J 4
- AN
& & \
3
=
.
4
B -
‘ ’
L »

el

Real-time Graphics
| Martin SamuelcCik

Cascaded SM

® Split view frustum to several parts and
create shadow map for each part

Real-time Graphics Microsoft
Martin Samuelcik

27

Trapezoidal SM

® http://www.comp.nus.edu.sg/~tants/tsm.html

® In shadow map texture space, find 2D trapezoid that
contains whole projected

® Create transformation TR, that maps classic shadow map
texture space to trapezoid texture space

® Store only interior of trapezoid in final shadow map

® In 2. pass, add TR when transforming from object space
to light’s normalized space o i

trapeoid

bounding box

bounding box space

Real-time Graphics 28
Martin Samuelcik

http://www.comp.nus.edu.sg/~tants/tsm.html

SM optimalization

® Simple ® Soft Shadows
— SSM'Simple — PCSS "Percentage Closer"
® Splitting ® Assorted

— PSSM "Parallel Split"
— (CSM "Cascaded"

ASM "Adaptive"
AVSM "Adaptive Volumetric"

® Warping CSSM "Camera Space"
— LiSPSM "Light Space Perspective" DASM "Deep Adaptive"
— TSM "Trapezoid" DPSM "Dual Paraboloid"
— PSM "Perspective" DSM "Deep"

® Smoothing FSM "Forward"
— PCF "Percentage Closer Filtering" LPSM "Logarithmic"

® Filtering MDSM "Multiple Depth"

— ESM "Exponential”

— CSM "Convolution"

— VSM "Variance"

— SAVSM "Summed Area Variance"

Real-time Graphics
Martin Samuelcik

RMSM "Resolution Matched"
SDSM "Sample Distribution”
SPPSM "Separating Plane Perspective"

wikipedia.org

29

Shadow volumes

® Shadow volume — set of rays from light through
each vertex of occluder, rays begin at vertex

shadowed scene wireframe shadow volumes

Real-time Graphics

Martin Samuelcik 30

Shadow volumes

® For polygonal models

® Compute silhouette edges of shadow casting
object with respect to the light source
— Get orientation of face from face vertices

— Silhouette edge — between front-facing and back-
facing faces

— Remove interior edges

® Compute volume quad by extruding silhouette
edge till the end of scene in the light direction

® Add caps at the ends of volume

Real-time Graphics

Martin Samuelcik 31

Shadows with SV

® Points in shadow are inside some light shadow
volume

® For each fragment, check if fragment is in interior
of shadow volume

® Stencil buffer implementations — masking scene

® Shadow volume algorithm
— I1 rI;{ﬁnder the scene as if it were completely in shadow (ambient
ight
— 2. For each light source:

® 1. Construct a mask in the stencil buffer that has holes only where the
visible surface is not in shadow.

® 2. Render the scene again with diffuse and specular light only in lit
areas based on the stencil buffer mask. Use additive blending to add
this render to the scene.

Real-time Graphics

Martin Samuelcik 32

Shadows with SV

® C — position of camera
® Fragment F inside shadow volume

— If C is outside, then segment CF has odd number of
intersections with SV planes (depth pass)

— Ray from F and direction (F-C) has odd number of

intersections with SV planes (depth fail)

| backfacing |

Real-time Graphics
I Martin Samuelcik

T~

Carmack's Reverse
Creative Labs patent ©

33

SV - depth pass

Clear stencil and color buffer

Render scene with ambient light

Disable writes to the depth and color buffers.
Use back-face culling.

Set the stencil operation to increment on depth pass (only count
shadow volume planes in front of the objectg)

Render the shadow volumes (only front faces are rendered).
Use front-face culling.

Set the stencil operation to decrement on depth pass.
Render the shadow volumes (only back faces are rendered).
Enable writes to the depth and color buffers.

Render scene with diffuse & specular light, update fragments only
where stencil = 0

Real-time Graphics

Martin Samuelcik 34

SV - depth fail

Clear stencil and color buffer

Render scene with ambient light

Disable writes to the depth and color buffers.
Use front-face culling.

Set the stencil operation to increment on depth fail (only count
shadow volume planes behind the object).

Render the shadow volumes with caps.

Use back-face culling.

Set the stencil operation to decrement on depth fail.
Render the shadow volumes with caps.

Enable writes to the depth and color buffers.

Render scene with diffuse & specular light, update fragments only
where stencil = 0

Real-time Graphics

Martin Samuelcik 35

Shadow volumes

light source

’

object

shadow
quad

| 0

shadow

‘/fquad

<P Real-time Graphics

> Martin SamuelCik 36

Shadow volumes

light f-;uuru;o

r, I'l. 0
shadow casting,” .+ % %
o F [

object ! .

penumbra wedge -\\

penumbra
wedge

eniry point (p) exit point (p,)

Real-time Graphics

> Martin Samuelcik 37

SV optimalization

® Reduction of SV rasterization using scissor test

® [For camera inside SV, use depth fail, and depth pass
otherwise

® Problem with far plane -> homogenous coordinates

® Use EXT stencil two side to reduce number of SV
rendering passes

® Use EXT _depth_bounds _testto remove shadow volumes
that do not affect the visible scene

® Approximation of silhouette
® Using simple bounding volumes, using BSP trees

Real-time Graphics 38
Martin Samuelcik

Shadow volumes

® Only hard shadows, geometry limited
® Robust, self-shadowing, GPU

id Software Bioware
Real-time Graphics
Martin Samuelcik

Shadow sources

http://www.nealen.net/projects/ibr/shadows.pdf
http://graphics.pixar.com/library/
http://developer.nvidia.com/object/hwshadowmap paper.html
http://www.ia.hiof.no/~borres/cgraph/explain/shadow/p-shadow.html
http://en.wikipedia.org/wiki/Shadow mapping
http://en.wikipedia.org/wiki/Shadow volume
http://www.cqg.tuwien.ac.at/courses/Realtime/slides/2008/07Shadows.

pdf
http://developer.nvidia.com/object/fast shadow volumes.html

http://http.developer.nvidia.com/GPUGems3/gpugems3 ch10.html

® http://msdn.microsoft.com/en-
us/library/ee416307%28v=vs.85%?29.aspx

® http://developer.download.nvidia.com/shaderlibrary/docs/shadow PC
SS.pdf

i‘li Real-time Graphics

I Martin Samuelcik 40

http://www.nealen.net/projects/ibr/shadows.pdf
http://graphics.pixar.com/library/
http://developer.nvidia.com/object/hwshadowmap_paper.html
http://www.ia.hiof.no/~borres/cgraph/explain/shadow/p-shadow.html
http://www.ia.hiof.no/~borres/cgraph/explain/shadow/p-shadow.html
http://www.ia.hiof.no/~borres/cgraph/explain/shadow/p-shadow.html
http://en.wikipedia.org/wiki/Shadow_mapping
http://en.wikipedia.org/wiki/Shadow_volume
http://www.cg.tuwien.ac.at/courses/Realtime/slides/2008/07Shadows.pdf
http://www.cg.tuwien.ac.at/courses/Realtime/slides/2008/07Shadows.pdf
http://developer.nvidia.com/object/fast_shadow_volumes.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html
http://msdn.microsoft.com/en-us/library/ee416307%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ee416307%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ee416307%28v=vs.85%29.aspx
http://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf
http://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf

Real-time Graphics

Martin Samuelcik 41

