
Real-time Graphics

5. Shadows

Martin Samuelčík

2

Shadows

• Realism, atmosphere

• Spatial relationships, object orientation, surface

• Light position, light properties

Real-time Graphics
Martin Samuelčík

3

Shadows

• Part of global illumination

• For each point, determine if there is some
occluder between point and light

Real-time Graphics
Martin Samuelčík

4

Hard vs. Soft shadows

• For each point, determine how much of
the light is visible from that point

Real-time Graphics
Martin Samuelčík

5

Shadows generation

• Offline generation + lights maps for static objects
and lights

• Approximate shadows using simple polygons

• Cast shadows on planar polygons by
transformation of objects into plane

• Compute intersection of shadow volumes with
scene

• Determine occlusion from light’s distance given
by shadow map

Real-time Graphics
Martin Samuelčík

6

Light maps

Real-time Graphics
Martin Samuelčík

7

Approximate shadows

• Replacing shadow with simple shape

• Cast ray from light through feature object

• Blend simple shape with framebuffer

Real-time Graphics
Martin Samuelčík

8

Planar shadows

• For planar receivers

• Render occluder as deformed object transformed
into receiver plane

• Blend receiver with transformed object

• Planar soft shadows - sample light source

• Several objects in one plane -> Z-fighting ->
solve with glPolygonOffset

• Parts of transformed occluder outside receiver &
double blending -> solve with stencil buffer

Real-time Graphics
Martin Samuelčík

9

Planar shadows

Real-time Graphics
Martin Samuelčík

10

Projective shadows

• Separate objects into occluders and receivers

• Render black occluders from light position into
texture with white background

• Project rendered map onto receivers

• No self shadowing, artifacts

Real-time Graphics
Martin Samuelčík

11

Shadow mapping

• Using map storing distances from light

• Image space – 2 pass algorithm

• HW supported, major shadow algorithm

Real-time Graphics
Martin Samuelčík

12

Shadow mapping

• 1.pass - Render scene from light position
– Render only depth buffer to texture

– Depth buffer → shadow map

– Shadow map holds distance D of objects to light

• 2. pass - Render scene normally
– For each fragment, calculate distance S to the light

– Transform fragments to light space – compute texture
coordinates for shadow map lookup

– Get distance D from shadow map (light space)

– If S>D → fragment is in shadow

Real-time Graphics
Martin Samuelčík

13

Shadow mapping

Real-time Graphics
Martin Samuelčík

14

Light space

• 1.pass - Rendering scene from light's point of view

• Setting modelview (MVL) and projection (PL)
transformation when rendering from light, so that light
frustrum fit scene tightly

• Shadow map texture coordinates are computed for each
vertex by reconstructing light transformation pipeline

• Third coordinate of shadow map coordinates is normalized
sitance of vertex from camera

[shadow_clip] = PL.MVL.[xo,yo,zo]
T

[shadow_norm] = shadow_clip / shadow_clip.w

[shadow_coords] = N. [shadow_norm]

Real-time Graphics
Martin Samuelčík

N

15

Light space

• MVL consits of VL (light view matrix) and ML
(model matrix)

• 2.pass – rendering from camera, with PC (camera
projection matrix), MVC (camera modelview
matrix) consists of VC and MC

• ML = MC

• We want to reconstruct shadow texture
coordinates, need PL and MVL, but MVL can be
different for each object

• Solution 1: s_clip = PL.VL.VC
-1.MVC.[xo,yo,zo]T

• Solution 2: s_clip = PL.VL.MC.[xo,yo,zo]T

Real-time Graphics
Martin Samuelčík

16

Rendering depth to texture

• Using FBO

• Internal format for texture
– GL_DEPTH_COMPONENT

– GL_DEPTH_COMPONENT24

– GL_DEPTH_COMPONENT32

• For perspective projection

• Depth precision
– s = 2d – 1, d is bit precision of buffer, <0,s> is then

range of values in depth buffer

– ze, we - coordinates of vertex in eye space

– zw integer depth value of vertex in depth buffer
Real-time Graphics
Martin Samuelčík

17

Depth precision

• https://www.opengl.org/wiki/Depth_Buffer_Precision

• Example 1:
– 16 bit depth buffer, d = 16, s = 65535, n = 0.01, f = 1000, we = 1

– zw = 0 -> ze = -0.01 = -n

– zw = 1 -> ze = -0.01000015

– zw = s-1 = 65534 -> ze = -395.9

– zw = s = 65535 -> ze = -1000 = -f

– All vertices with distance from camera between 0.01 and
0.01000015 are mapped into two values 0, 1 in depth buffer –
very good precision

– All vertices with distance from camera between 395.9 and 1000
are mapped only into two values 65534, 65535 in depth buffer –
very poor precision

Real-time Graphics
Martin Samuelčík

https://www.opengl.org/wiki/Depth_Buffer_Precision

18

Depth precision
• Example 2:

– 16 bit depth buffer, d = 16, s = 65535, n = 0.1, f = 100, we = 1

– zw = 0 -> ze = -0.1 = -n

– zw = 1 -> ze = -0.01000015

– zw = s-1 = 65534 -> ze = -98.499

– zw = s = 65535 -> ze = -100 = -f

– Vertices with distance from camera between 0.01 and 0.01000015 are mapped
into two values 0, 1 in depth buffer – very good precision

– Vertices with distance from camera between 98.499 and 100 are mapped into
two values 65534, 65535 in depth buffer – relatively good precision

• As the ratio (f/n) increases, less precision is available near
the back of the depth buffer and more precision is
available close to the front of the depth buffer

• For same precision in whole range, use linear depth –
normalized ze values

Real-time Graphics
Martin Samuelčík

19

SM resolution problem

• Map resolution – jagged edges of shadows

• Solution – use higher resolution, blur shadow map
(percentage close filtering), use more maps, …

Real-time Graphics
Martin Samuelčík

20

Percentage close filtering

• Classical filter – filtering of depth values

• PCF – filtering depth comparison values

• HW supported

Real-time Graphics
Martin Samuelčík

21

SM problems

• Perspective aliasing – same shadow map
resolution for near and far objects

• Solution – redistribute values in shadow map

Real-time Graphics
Martin Samuelčík

22

SM problems

• Incorrect self-shadowing – caused by similar values of S
(normalized z eye coordinate of fragment) and D (depth
from shadow map) on lit surface and SM precision

• Solution – add bias to shadow map values

Real-time Graphics
Martin Samuelčík

23

SM problems

• Projective aliasing – for planes almost parallel to
light direction

• Solution – similar to perspective aliasing

Real-time Graphics
Martin Samuelčík

24

OpenGL SM support
• Not using shaders

– Computation of light space in texture transformation
– GL_ARB_shadow – testing, depth comparision

• Shaders
– Test in fragment shader
– Uniforms for accessing depth textures
– sampler2D – fetch from texture gets depth values, , possibly

filtered
– sampler2Dshadow – fetch from texture returns result of

comparison, possibly filtered
– Comparision function for shadow sampler setting

• glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,
GL_COMPARE_REF_TO_TEXTURE​)

• glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC,
GL_LEQUAL)

– Support for float samplers and sampler objects in newer OpenGL

Real-time Graphics
Martin Samuelčík

25

Shadow mapping - GLSL
// SHADOW MAPPING VERTEX SHADER - 2.pass

varying vec4 L_eye;

varying vec4 N_eye;

varying vec4 diffTexCoords;

varying vec4 depthTexCoords;

uniform mat4 lightProj;

uniform mat4 lightView;

uniform mat4 cameraViewInverse;

void main(void)

{

 // compute vectors for light calculation

 vec4 V_eye = gl_ModelViewMatrix * gl_Vertex;

 L_eye = normalize(gl_LightSource[0].position - V_eye);

 N_eye = vec4(gl_NormalMatrix * gl_Normal, 0.0);

 gl_Position = gl_ProjectionMatrix * V_eye;

 diffTexCoords = gl_MultiTexCoord0;

 // compute normalized light space coordinates

 depthTexCoords = lightProj * lightView * cameraViewInverse * V_eye;

 depthTexCoords = 0.5 * (depthTexCoords / depthTexCoords.w) + 0.5;

 V_eye = -V_eye;

}

Real-time Graphics
Martin Samuelčík

// SHADOW MAPPING FRAGMENT SHADER - 2.pass

varying vec3 L_eye;

varying vec3 N_eye;

varying vec4 diffTexCoords;

varying vec4 depthTexCoords;

uniform sampler2D diffuseTexture;

uniform sampler2DShadow depthLightTexture;

void main(void)

{

 vec3 L = normalize(vec3(L_eye));

 vec3 N = normalize(vec3(N_eye));

 difColor = texture(diffuseTexture, vec2(diffTexCoords));

 float diffuse = max(dot(L, N), 0);

 // add some epsilon to depth to prevent bias

 depthTexCoords.z += 0.0001;

 // get result of comaprision between depth from shadow map and third
coordinate of depthTexCoords

 float depth_test = texture(depthLightTexture, vec3(depthTexCoords));

 diffuse = depth_test * diffuse;

 gl_FragColor = 0.5f * gl_LightSource[0].ambient * diffColor +

 diffuse * gl_LightSource[0].diffuse * diffColor;

}

26

Soft shadows

• PCF generates blurred, soft shadows

• Can be blurred also in image space

• PCF kernel size adaptive to distance

Real-time Graphics
Martin Samuelčík

27

Cascaded SM

• Split view frustum to several parts and
create shadow map for each part

Real-time Graphics
Martin Samuelčík

Microsoft

28

Trapezoidal SM
• http://www.comp.nus.edu.sg/~tants/tsm.html

• In shadow map texture space, find 2D trapezoid that
contains whole projected

• Create transformation TR, that maps classic shadow map
texture space to trapezoid texture space

• Store only interior of trapezoid in final shadow map

• In 2. pass, add TR when transforming from object space
to light’s normalized space

Real-time Graphics
Martin Samuelčík

Microsoft

http://www.comp.nus.edu.sg/~tants/tsm.html

29

SM optimalization

• Simple

– SSM "Simple“

• Splitting

– PSSM "Parallel Split"

– CSM "Cascaded"

• Warping

– LiSPSM "Light Space Perspective"

– TSM "Trapezoid"

– PSM "Perspective“

• Smoothing

– PCF "Percentage Closer Filtering“

• Filtering

– ESM "Exponential"

– CSM "Convolution"

– VSM "Variance"

– SAVSM "Summed Area Variance“

Real-time Graphics
Martin Samuelčík

• Soft Shadows

– PCSS "Percentage Closer"

• Assorted

– ASM "Adaptive"

– AVSM "Adaptive Volumetric"

– CSSM "Camera Space"

– DASM "Deep Adaptive"

– DPSM "Dual Paraboloid"

– DSM "Deep"

– FSM "Forward"

– LPSM "Logarithmic"

– MDSM "Multiple Depth"

– RMSM "Resolution Matched"

– SDSM "Sample Distribution"

– SPPSM "Separating Plane Perspective"

wikipedia.org

30

Shadow volumes

• Shadow volume – set of rays from light through
each vertex of occluder, rays begin at vertex

Real-time Graphics
Martin Samuelčík

31

Shadow volumes

• For polygonal models

• Compute silhouette edges of shadow casting
object with respect to the light source

– Get orientation of face from face vertices

– Silhouette edge – between front-facing and back-
facing faces

– Remove interior edges

• Compute volume quad by extruding silhouette
edge till the end of scene in the light direction

• Add caps at the ends of volume
Real-time Graphics
Martin Samuelčík

32

Shadows with SV

• Points in shadow are inside some light shadow
volume

• For each fragment, check if fragment is in interior
of shadow volume

• Stencil buffer implementations – masking scene
• Shadow volume algorithm

– 1. Render the scene as if it were completely in shadow (ambient
light)

– 2. For each light source:
• 1. Construct a mask in the stencil buffer that has holes only where the

visible surface is not in shadow.
• 2. Render the scene again with diffuse and specular light only in lit

areas based on the stencil buffer mask. Use additive blending to add
this render to the scene.

Real-time Graphics
Martin Samuelčík

33

Shadows with SV

• C – position of camera

• Fragment F inside shadow volume

– If C is outside, then segment CF has odd number of
intersections with SV planes (depth pass)

– Ray from F and direction (F-C) has odd number of
intersections with SV planes (depth fail)

Real-time Graphics
Martin Samuelčík

Carmack's Reverse
Creative Labs patent 

34

SV - depth pass

• Clear stencil and color buffer
• Render scene with ambient light
• Disable writes to the depth and color buffers.
• Use back-face culling.
• Set the stencil operation to increment on depth pass (only count

shadow volume planes in front of the object).
• Render the shadow volumes (only front faces are rendered).
• Use front-face culling.
• Set the stencil operation to decrement on depth pass.
• Render the shadow volumes (only back faces are rendered).
• Enable writes to the depth and color buffers.
• Render scene with diffuse & specular light, update fragments only

where stencil = 0

Real-time Graphics
Martin Samuelčík

35

SV - depth fail

• Clear stencil and color buffer
• Render scene with ambient light
• Disable writes to the depth and color buffers.
• Use front-face culling.
• Set the stencil operation to increment on depth fail (only count

shadow volume planes behind the object).
• Render the shadow volumes with caps.
• Use back-face culling.
• Set the stencil operation to decrement on depth fail.
• Render the shadow volumes with caps.
• Enable writes to the depth and color buffers.
• Render scene with diffuse & specular light, update fragments only

where stencil = 0

Real-time Graphics
Martin Samuelčík

36

Shadow volumes

Real-time Graphics
Martin Samuelčík

37

Shadow volumes

Real-time Graphics
Martin Samuelčík

38

SV optimalization

• Reduction of SV rasterization using scissor test

• For camera inside SV, use depth fail, and depth pass
otherwise

• Problem with far plane -> homogenous coordinates

• Use EXT_stencil_two_side to reduce number of SV
rendering passes

• Use EXT_depth_bounds_test to remove shadow volumes
that do not affect the visible scene

• Approximation of silhouette

• Using simple bounding volumes, using BSP trees

Real-time Graphics
Martin Samuelčík

39

Shadow volumes

• Only hard shadows, geometry limited

• Robust, self-shadowing, GPU

Real-time Graphics
Martin Samuelčík

id Software Bioware

40

Shadow sources

• http://www.nealen.net/projects/ibr/shadows.pdf
• http://graphics.pixar.com/library/
• http://developer.nvidia.com/object/hwshadowmap_paper.html
• http://www.ia.hiof.no/~borres/cgraph/explain/shadow/p-shadow.html
• http://en.wikipedia.org/wiki/Shadow_mapping
• http://en.wikipedia.org/wiki/Shadow_volume
• http://www.cg.tuwien.ac.at/courses/Realtime/slides/2008/07Shadows.

pdf
• http://developer.nvidia.com/object/fast_shadow_volumes.html
• http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html
• http://msdn.microsoft.com/en-

us/library/ee416307%28v=vs.85%29.aspx
• http://developer.download.nvidia.com/shaderlibrary/docs/shadow_PC

SS.pdf

Real-time Graphics
Martin Samuelčík

http://www.nealen.net/projects/ibr/shadows.pdf
http://graphics.pixar.com/library/
http://developer.nvidia.com/object/hwshadowmap_paper.html
http://www.ia.hiof.no/~borres/cgraph/explain/shadow/p-shadow.html
http://www.ia.hiof.no/~borres/cgraph/explain/shadow/p-shadow.html
http://www.ia.hiof.no/~borres/cgraph/explain/shadow/p-shadow.html
http://en.wikipedia.org/wiki/Shadow_mapping
http://en.wikipedia.org/wiki/Shadow_volume
http://www.cg.tuwien.ac.at/courses/Realtime/slides/2008/07Shadows.pdf
http://www.cg.tuwien.ac.at/courses/Realtime/slides/2008/07Shadows.pdf
http://developer.nvidia.com/object/fast_shadow_volumes.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch10.html
http://msdn.microsoft.com/en-us/library/ee416307%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ee416307%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ee416307%28v=vs.85%29.aspx
http://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf
http://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf

41

Questions?

Real-time Graphics
Martin Samuelčík

